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1 Introduction 
 

Aircraft simulators have been in use for many years for training pilots. Such a simulator 

provides the trainee with a mockup of the "cockpit" of the actual vehicle being simulated.1 The 

out-the-window scene is typically produced by a computer image generator. The simulator allows 

the trainee to become familiar with the controls and displays of the actual vehicle, while providing a 

safer and less expensive alternative to training in the actual vehicle. 

The Department of Defense uses simulators for advanced weapons training. The vehicles 

used in today's modern warfare are equipped with many complex weapon systems. Simulation 

allows troops to safely sharpen their skills on these complex systems in a simulation environment, 

while saving considerable expense.2 

Simulators have been shown to be effective for training an individual in specific skills, 

however due to their standalone nature, they have not been a factor in collective, combined arms, 

joint training.3 In the past, the United States military has relied solely on field exercises to train 

individuals to perform as an integrated, coordinated unit. In recent years budget cuts, loss of land, 

and a heightened concern for environmental impact has lead the DoD to consider other alternatives 

to field training.4  

 

 

 

 

 

 

 

 

 



1.1 Distributed Interactive Simulation Defined 

Distributed Interactive Simulation (DIS) was conceived in the mid 1980s as a result of the 

ARPA SIMNET program.  One of the goals of the SIMNET program was to define a networking 

protocol which would enable disparate simulators to interoperate in a distributed  virtual reality 

environment.  The original SIMNET protocol has evolved into the DIS protocol, which is now an 

IEEE standard.5  This standard defines a set of protocol data units (PDUs) through which entities 

participating in a distributed interactive simulation may exchange state information and 

communicate simulation events such as weapons fire, warhead detonation, or collisions with other 

simulators.  The messages broadcasted onto the network communicate “ground truth”.  The 

individual simulators which receive these messages are responsible for determining what is 

perceived.  

The most frequently used PDU is the EntityStatePDU, which is used by entities to broadcast 

their state onto a network.  EntityStatePDUs contain all the necessary information for a given 

simulator to render and interoperate with remote simulators. 

Figure 1.1 

struct EntityStatePDU 
{ 
 PDUHeader  header; 
 EntityID   entityID; 
 unsigned char  forceID; 
 unsigned char  numArticulatedParts; 
 EntityType  entityType; 
 EntityType  guise; 
 LinearVelocity  velocity; 
 WorldCoordinates location; 
 EntityOrientation  orientation; 
 unsigned long  appearance; 
 DeadReckonParms deadReckonParms; 
 EntityMarking  marking; 
 EntityCapabilities capabilities; 
 ArticulatedParts  articulatedParts[1]; 
}; 
  
  
  

 



The EntityStatePDU as defined by DIS Version 2.0 Draft 3 is illustrated in Figure 1. 1. This PDU 

contains a three-tuple identifier which uniquely identifies the vehicle that the PDU is from. Also 

contained in this PDU is the type of entity (i.e. M 1 tank, AH64 Apache helicopter, etc.), the 

location of the entity given in a three-dimensional earth-centered earthfixed coordinate system, 

velocity vector, orientation, and other miscellaneous information. 

The virtual world created by a distributed interactive simulation takes place over some 

rectangular region of terrain which can be up to hundreds of kilometers across in any direction. 

This terrain surface is generally a polygon mesh created from Defense Mapping Agency 

elevation data. The terrain is typically augmented with features as well. These features include 

trees, tree lines, forested areas, roads, rivers, railroads, lakes, buildings, utility poles and lines. 

The terrain and features which comprise the virtual world are persistent and static in the sense 

that they are not mutable by events of the simulation. 

In contrast to the terrain and features, vehicles operating in the virtual world are quite 

dynamic. They may assume any location, orientation, or appearance within the constraints of the 

vehicle being simulated. Crews operating a simulator view the virtual world from the vantage 

point of their vehicle. Because the simulators broadcast their state information (i.e. location, 

orientation, velocity) over a network, the out-the-window scene produced by simulators may 

include not only terrain and features but also vehicles generated by other remote simulators. 

This technological breakthrough allowed large multiforce virtual battles to be created by 

networking simulators for tanks, armored personnel carriers, rotary wing and fixed wing 

 



 
aircraft. Unlike the case of the standalone simulator in which the trainee only learns to operate 

the simulated vehicle, Distributed Interactive Simulation allows troops to train together to 

learn tactics and doctrine, command and control, and communications as well.6 

Since its inception, DIS has broadened in scope to include virtual prototyping, systems 

testing, human factors analysis, and the evaluation of threat systems. DIS today is often used to 

influence engineering decisions concerning proposed weapon systems, and also to develop 

tactics and doctrine for existing systems which are not yet battle proven.7 The potential of DIS is 

being recognized by non-military organizations as well. DIS is likely to play a major role in the 

evolution of the Intelligent Vehicle Highway System.8 Many state governments are investigating 

the feasibility of DIS for emergency response training.9 DIS is being investigated as a training 

technique for air traffic controllers,10 driver's training,11 and it is not difficult to imagine the 

potential of DIS in the entertainment industry. 

 

1.2 Motivation for Dynamic Terrain 

One of the major drawbacks of the DIS architecture is that the terrain is static over the 

course of a simulation. A more realistic simulation would allow for simulation events to effect 

the terrain surface and features. A large bomb exploding over the terrain surface is likely to 

create a crater, making that section of the terrain impassable for many types of vehicles. A 

bulldozer should be able to create a bean behind which tanks may take cover in a defensive 

position. An aircraft should not be able to take off from a runway which has been cratered by 

bombing. 

 



 

 

 

In static terrain simulations, all entities are assured to have a consistent view of the virtual 

environment because terrain and associated features are loaded from disk files at simulation 

initialization time. A dynamic terrain simulation however would require updates to be transmitted 

over the network. To date, dynamic terrain has been considered by the DIS community to be 

economically unfeasible. This is due in part to the fact that terrain and feature data are used in a 

variety of different ways, and often a different representation is warranted by the different uses. 

For example, image generation systems producing the out-the-window scene require the terrain to 

be represented by a database of polygons with associated color and texture information.12 Image 

generators account for the majority of the cost of a simulator, and terrain database formats used 

by image generators are proprietary, highly coupled to the particular image generation system, 

and not readily amenable to real-time updates.13 A polygonal representation of the terrain is also 

not suitable for an automated forces workstation which injects unmanned vehicles into the virtual 

world and hence does not require an image generator.14 This type of application requires a terrain 

database format more suitable for tasks such as calculating the elevation of the terrain at a given 

X-Y coordinate, orienting a ground vehicle onto the terrain surface given an X-Y location and 

heading, or determining the existence of a line of sight between two points. 

Terrain representation schemes which are amenable to dynamic updates and also meet 

the needs described above are the topic of many papers being presented at the DIS 

workshops.15 However, the implications of dynamic terrain on the DIS protocol has been 

largely ignored.16 Due to the persistent nature of terrain, it is necessary that all simulation 

 



 

 participants have a consistent view of the terrain database. If simulation events are allowed 

 to affect the terrain surface, it has been the consensus of the DIS community that the 

 responsibility for mutating the terrain should be accomplished by a dynamic terrain server.17 

 The dynamic terrain server would monitor the network traffic looking for messages which 

 would be capable of mutating the terrain. Examples of such messages would include 

 DetonationPDUs, which indicate the location and warhead type of a detonation, and 

 CollisionPDUs which indicate collisions between two vehicles or a collision between a 

 vehicle and the terrain. Like a static terrain simulation, a dynamic terrain simulation would 

 require the initial state of the terrain database to be loaded from disk files by simulation 

 participants at initialization time. Throughout the course of a simulation, changes to the 

s terrain affected by the dynamic terrain server must be communicated to the simulation 

 participants through the use of PDUs added to the DIS protocol.18 

  Currently, all DIS PDUs are broadcasted onto the network using UDP, an unreliable 

 datagram service.19 Due to the large number of entities which may participate in a 

 distributed simulation, reliable point-to-point communication of state messages would use an 

 extensive amount of network bandwidth and would not lend itself well to the real-time 

 nature of a distributed interactive simulation.20 EntityStatePDUs, which represent the vast 

 majority of network traffic, fall into this category.21 If a given simulator A were to miss an 

 EntityStatePDU from another simulator B, A would be able to dead reckon the position of B 

 using the position and velocity vector provided by the last EntityStatePDU received from 

 vehicle B.22 If the EntityStatePDU missed by vehicle A communicated a significant change 

 



 

 

 

in the velocity vector, then the dead reckoned position of vehicle B would vary significantly from 

the "truth" position of vehicle B. At the point in time when vehicle A receives the next 

EntityStatePDU from vehicle B, vehicle B would appear to jump from its dead reckoned position 

to its truth position from the vantage point of vehicle A. The degree to which this momentary 

visual anomaly manifests itself is a function of the change in velocity vectors and the elapsed 

time between the EntityStatePDU missed by simulator A, and the next EntityStatePDU which A 

receives from B. At the point which simulator A finally receives the EntityStatePDU from 

simulator B, the situation has corrected itself with no cumulative detriment to the simulation. 

Unlike the case of the EntityStatePDUs, PDUs which contain updates to the terrain 

database must be transmitted in a reliable fashion. If the dynamic terrain server mutates a section 

of the terrain and one or more of the simulation hosts does not receive the update, the validity of 

the simulation is in jeopardy. In the case of manned simulators, human operators make decisions 

based on visual feedback from scenes rendered by image generation systems. If they are 

presented with a scene which is not consistent with the current state of the virtual environment, it 

is unlikely that they will be able to take the appropriate action. This is equally true in the case of 

automated forces, which use their notion of the environment to perform terrain reasoning. For 

both manned simulators and automated forces, accurate terrain information is necessary for 

orienting the vehicle in space and calculating vehicle dynamics. 

 



 

Due to the persistent nature of terrain, missed updates to the terrain database would cause 

visual anomalies which would remain for the duration of the simulation. As an example, consider 

a tank simulator which misses an update to the terrain database which results in a crater in the 

pathway of the tank. As the tank simulator passed over the newly formed crater, the simulation 

software would be using out-of-date terrain information for orienting the vehicle in space, 

calculating vehicle dynamics, and rendering the out-the-window scene. From the vantage point of 

other vehicles, the tank would appear to be flying over the crater. The crew members in the tank 

would not be able to see the crater either. If the tank simulator would have received the terrain 

update and drove into the crater, this may have resulted in a thrown track for the tank. Clearly, 

missed terrain update messages could effect the outcome of a simulation. 

In order to maintain consistency with the DIS philosophy of no reliance on a central 

computer, multiple redundant dynamic terrain servers must be able to coexist on the same 

simulation network. However, there should not be multiple responses to simulation events which 

mutate the terrain surface. If a particular server goes off line, this should be detected by the other 

server(s) and some server should take over as appropriate. 

As one can infer from the above discussion, the implementation of dynamic terrain in 

distributed interactive simulation imposes many interesting network protocol related challenges. 

Chapter 2 discusses some potential solutions to the problem of providing reliable terrain updates, 

and shows why these solutions would not be feasible. Chapter 3 then introduces the Checksum 

Tree, which is the solution chosen by this thesis to address the 

 



 

 

 

problem of reliable terrain updates. The Checksum Tree is a novel approach to representing the 

state of the entire dynamic terrain database. The terrain database state is then broadcasted onto the 

network by the terrain server so that client simulations may confirm that their local copy of the 

terrain database is up-to-date. Chapter 4 addresses the issue of fault tolerance, and introduces the 

concept of the Virtual Server for providing a fault tolerant dynamic terrain serving entity. The 

Virtual Server is also a new idea for addressing the need for fault tolerance among environmental 

servers. Chapter 5 discusses the details of implementation of the Checksum Tree and the Virtual 

Server. Chapter 6 discusses the methods and results of testing the implementation. Chapter 7 

provides conclusions and suggests areas for further research. 

 



2 The Dynamic Terrain Update Problem 

The introductory chapter established the need for reliable transmission of terrain update messages. This 

chapter begins by introducing terrain representations used for distributed interactive simulations. The short 

comings to some of the obvious approaches to the dynamic terrain update problem are discussed, followed by an 

examination of the existing literature. The following chapter then introduces the Checksum Tree Protocol, which 

is the solution purposed by this thesis. 

 

2.1 Terrain Representations 

Terrain databases are typically on the order of megabytes in size. The database must be segmented into 

manageable size units which are suitable for network transmission. In this discussion we will refer to these units 

as terrain "patches". The driving factors in choosing the size of the patch are the maximum possible size of the 

terrain update message and the desired maximum fidelity or resolution in which the terrain is represented. The 

DIS protocol specifies the User Datagram Protocol (UDP) as the underlying transport mechanism. When using 

Ethernet V2.0 as the underlying data link service, the maximum size of a DIS PDU is 1458 bytes.23 

Most systems used for DIS today use a polygonal mesh to represent the terrain surface. Alternate 

terrain representations which better lend themselves to network transmission are currently being studied. 

Examples of such representations include B-Splines and parametric surfaces.24 The emphasis of this thesis 

however is not on terrain representation but on the handshaking mechanism between terrain servers and 

simulation participants to provide reliable data transfer. 

 

 

 

For the sake of simplicity, the terrain representation used by this thesis ignores any terrain features and 

represents the terrain surface as a 2-dimensional grid of elevation samples. From this elevation grid, a polygon 

mesh25 may be formed as illustrated by Figure 2.1. Four mutually adjacent elevation samples form the vertices 



for two triangles by placing an edge between each elevation sample and its immediate South-East neighbor. 

Edges are also placed between horizontally and vertically adjacent elevation samples.  

   

   Figure 2.1 

 

 A patch size of 500m by 500m using 32-bit floating point numbers to represent the elevation 

data allows for an elevation sample every 26.3 meters. A patch size of 100m allows for an elevation sample 

every 5.3 meters. In the interest of optimal usage of the network bandwidth, tradeoffs must be made between the 

patch size and the maximum resolution of the terrain. For the purposes of illustrating the concepts presented in 

this thesis, a patch size of 500m by 500m was chosen. 

 



 

Associated with each patch of terrain is a revision level. Initially the revision level of all 

patches is zero and is incremented each time the patch is modified and transmitted by the 

dynamic terrain server. The following sections discuss possibilities for ensuring the reliable 

transmission of terrain update messages. 

 

2.2 The Reliable Connection-Oriented Service Approach 

To perform reliable data transfer over a network, one typically chooses a protocol in 

which the data packets to be transferred from the source host to the destination host are 

acknowledged by the receiving host. The Transmission Control Protocol (TCP)26 is an example 

of a reliable connection-oriented service which employs such a mechanism to provide reliable 

data transfer. When trying to layer such a technique on top of the DIS protocol however, some 

difficulties arise: 

• DIS, being layered above UDP, is an unreliable broadcast service. If the terrain server were 

to establish a reliable connection-oriented service to each participant in the simulation, a 

large amount of redundant data would be transmitted over the network. 

• DIS simulations can involve up to thousands of entities.27 As the terrain updates must take 

place in real time, it is not feasible for the terrain server to establish a reliable 

connection-oriented service to each simulation participant, for the delays would far exceed 

the human perception limit of 100 milliseconds.28 

 



 

A reliable connection-oriented service is not a feasible option considering the current network 

technology due to the amount of bandwidth which would be consumed by the point-to-point 

connections established between a dynamic terrain server and numerous simulation clients. 

Furthermore, the temporal latencies associated with a server individually servicing potentially 

hundreds of clients would not be tolerable in a real-time simulation. 

 

2.3 The Host Check-In Approach 

The Host Check-In (HCI) approach is similar to a reliable point-to-point 

connection-oriented service, with the exception that the terrain update data itself need not be 

transmitted redundantly over the network to multiple simulation participants. The HCI approach 

would require each simulation host to check in to a particular terrain server at initialization time. 

Simulation participants checked-in to a particular server become clients of that server. The process 

of checking in informs the server of the number and identity of each of its clients. Reliable transfer 

of terrain updates is afforded by the fact that each server expects to receive an acknowledgment 

packet from each of its clients when a terrain update message is transmitted. At the expiration of 

some time-out period, the server can determine which clients failed to acknowledge the terrain 

update message. If some clients fail to acknowledge, the server will retransmit the message. This 

process may continue for some number of iterations, at which point non-responding clients may be 

assumed by the server to be off line. 

 



 

When the terrain server updates a patch of terrain in the database, it issues a single 

TerrainPatchUpdatePDU. The terrain server then expects to receive a 

TerrainPatchUpdateAckPDU from each of its clients. Figure 2.2 illustrates the 

TerrainPatchUpdatePDU and the TerrainPatchUpdateAckPDU. At the expiration of some 

time-out period, the server is able to determine if any of its clients fail to acknowledge a 

TerrainPatchUpdatePDU. If this is the case, another TerrainPatchUpdatePDU will be issued. 

Note that the TerrainPatchUpdatePDU contains a 

Figure 2.2 
 
struct TerrainPatchUpdatePDU 
{ 
 PDUHeader header;  
 SimulationAddress serverID; 
 unsigned short terrainDatabseID; 
 unsigned short revisionNumber; 
 unsigned short patchCoordX; 
 unsigned short patchCoordY; 
 unsigned short samplesize; 
 short _unused; 
 float  zValues[1]; // Varies 
}; 
 
struct TerrainPatchUpdateAckPDU 
{ 
 PDUHeader header; 
 SimulationAddress clientID; 
 SimulationAddress serverID; 
 unsigned short terrainDatabseID; 
 unsigned short revisionNumber; 
 unsigned short  patchCoordX; 
 unsigned short patchCoordY; 
}; 

 

revision level for the patch which is being updated. When a simulation receives an update for a 

patch of terrain it checks the revision level of that patch in its local copy of the terrain database. If 

the revision level is the same as that which is specified by the PDU, the update is ignored. For 

this reason, repeated broadcasts are idempotent with respect to clients. 

 



 

However, an acknowledgment is still required from every client as the original acknowledgment 

may have been lost. 

The best case scenario (i.e. no lost packets or acknowledgments) using the HCI approach 

would result in N+1 packets being transmitted for each terrain patch update, where N is the 

number of client simulations. In comparison with the Reliable Connection Oriented Service where 

2*N represents the best case scenario, HCI is definitely a preferred approach. Simulation hosts also 

benefit from receiving their patch update messages simultaneously during the initial broadcast, as 

opposed to waiting in turn for the server to establish a connection with each client. 

The HCI approach is promising in scenarios where the number of simulation hosts is small. 

Note that this does not limit the number of entities which participate in a simulation, since one host 

may simulate numerous entities. Simulations involving a large number of entities which are 

generated primarily by automated forces workstations may best benefit from the HCI approach. 

However, simulations which involve large numbers of manned entities, where the simulation host 

to entity ratio approaches one, may find that the number of acknowledgments generated for each 

terrain patch update becomes a significant impact on network bandwidth. 

A significant disadvantage to the HCI approach arises when either a client fails to receive 

the TerrainPatchUpdatePDU, or the corresponding TerrainPatchUpdateAckPDU is lost. If either of 

these happen, the server does not receive acknowledgments from all clients and transits another 

TerrainPatchUpdatePDU. However, the server has no way of knowing 

 



 

if a client failed to receive the TerrainPatchUpdatePDU or if the acknowledgment was lost. 

This forces all clients to again transmit acknowledgments even though they may have 

originally received the TerrainPatchUpdatePDU, and their acknowledgment was received by 

the server. Thus each retransmittal by the server results in another N+ I packets on the 

network. During conditions where a high probability exists for collisions, this condition could 

lead to an unstable situation.29 

 

2.4 The Piggy-Backed Acknowledgment Approach 

Throughout the course of a simulation, simulators are emitting EntityStatePDUs at 

the rate of at least the inverse of the time-out threshold specified by the exercise   

administrator. The DIS standard dictates five seconds for the time-out threshold. As  

entities move about the virtual world, their dead-reckoned positions and orientations begin 

to deviate from their "truth" positions and orientations eliciting the emission of even more 

EntityStatePDUs. The Piggy-Backed Acknowledgment (PBA) approach views the 

EntityStatePDU traffic as a "sunk cost" and attempts to piggyback acknowledgments to 

dynamic terrain update messages onto these EntityStatePDUs. This approach would expand 

the EntityStatePDU to include the patch number and revision level of the patch the entity is 

currently located over. Figure 2.3 illustrates the modified EntityStatePDU, with the inserted 

fields indicated in bold. 

 



Terrain servers monitor EntityStatePDUs to ensure that revision levels are up to date for 

the specified patch. If an entity is using an incorrect revision level of the patch, the server can infer 

that the particular entity did not receive the original patch update message, and a new patch update 

message will be issued by the server. 

Note that the patch is identified by its normalized coordinates, patchCoordX and 

patchCoordY, which are relative to the origin of the terrain database. These patch coordinates 

could be derived from the reported location of the vehicle in geocentric coordinates, however this 

would impose significant computational complexity on the servers who must check each and every 

EntityStatePDU on the network. 

This technique lends itself well to the use of multiple terrain servers, where each server is 

responsible for a particular geographic partition of the terrain database. Under this arrangement, a 

server need only check EntityStatePDUs from vehicles which are operating within their 

geographic partition. 

  Figure 2.3 

struct EntityStatePDU 
{ 
 PDUHeader  header; 
 EntityID  entityID; 
 unsigned char  forceID; 
 unsigned char  numArticulatedParts; 
 EntityType  entityType; 
 EntityType  guise; 
 LinearVelocity  velocity; 
 WorldCoordinates  location; 
 Entity0rientation orientation; 
 unsigned long  appearance; 
 DeadReckonParms  deadReckonParms; 
 EntityMarking  marking; 
 EntityCapabilities capabilities; 
 unsigned short  patchCoordX; 
 unsigned short  patchCoordY; 
 unsigned short  revisionLevel; 
 short  _unused; 
 ArticulatedParts  articulatedParts[1]; 
); 

 



 

PBA has the obvious advantage over both the Reliable Connection-Oriented Service and Host Check-In in 

that no overhead PDUs are generated. In the best case scenario, the only impact on network traffic is the 

TerrainPatchUpdatePDU itself. One subtle disadvantage is that simulators may use terrain patches other than the 

one they are currently positioned over for the purposes of out the window scene generation, clear line of sight 

calculations, terrain reasoning, etc. If a simulator were to miss a TerrainPatchUpdatePDU, and the affected patch 

of terrain were used by the simulator for rendering an out-the-window 

 

  Figure 2.4 

struct TerrainPatchUpdatePDU 
{ 
 PDUHeader  header; 
 SimulationAddress serverID; 
 unsigned short  terrainDatabseID;  
 unsigned short  revisionNumber;  
 unsigned short  patchCoordX;  
 unsigned short  patchCoordY; 
 unsigned short  sampleSize; 
 short  unused; 
 unsigned long  sequence; 
 float  zValues[1]; // Varies 
}; 

 

scene, the server would have no knowledge of the fact that the simulator in question was 

using a stale patch of terrain. 

 

2.5 The Sequenced Update Message Approach 

This approach is similar to the Piggy-Backed Acknowledgement approach discussed in the previous section, but is based on an 

idea purposed by Kaashoek.30 In this approach, the dynamic terrain server would sequence terrain update messages. The 

 

 

 

 

 



     Figure 2.5 
 
  Struct EntityStatePDU 
  { 
   PDUHeader  header; 
   EntityID   entityID; 
   unsigned char  forceID; 
   unsigned char  numAriculatedParts; 
   EntityType  entityType; 
   Entitytype  guise; 
   LinearVelocity  velocity; 
   WorldCoordinates location; 
   EntityOrientation  orientation; 
   unsigned long  appearance; 
   DeadReckonParms deadReckonParms; 
   EntityMarking  marking; 
   EntityCapabilities capabilities; 
   unsigned long  highestSequence; 
   ArticulatedParts  articulatedParts[1]; 
  {; 

    
       

  TerrainPatchUpdatePDU is expanded to include this global sequence 

number assigned by the server and incremented for each new TerrainPatchUpdatePDU 

generated. Figure 2.4 illustrates the TerrainPatchUpdatePDU with the modified fields 

indicated in bold. 

The EntityStatePDU is modified to include the highest sequence number for which 

the entity has received TerrainPatchUpdatePDUs for all lower sequence numbers. For 

example, if the entity receives TerrainPatchUpdatePDUs with sequence numbers 1, 2, 3, and 

5; the entity reports 3 as the highest contiguous sequence number received in EntityStatePDUs 

generated by that entity. Figure 2.5 illustrates the EntityStatePDU with the modified fields 

indicated in bold. 

The server is capable of determining if any terrain update messages were lost by 

monitoring EntityStatePDUs and checking the highestSequence field reported by the entities. 

In the above example, the current sequence is 5 and the entity in question is reporting 3. The 

server can infer that the entity missed at least the TerrainPatchUpdatePDU with sequence 

number 4, and possibly 5 as well. The server can then retransmit the 

 



 

TerrainPatchUpdatePDU with sequence 4. If the entity missed sequence 5 also, that will be 

determined from subsequent EntityStatePDUs generated by that entity. 

Assuming the server has finite memory resources and cannot maintain an infinite history 

of all TerrainPatchUpdatePDUs generated, client simulators will be required to check into the 

server. The server need not maintain TerrainPatchUpdatePDUs with sequence numbers less 

than or equal to the minimum of sequence numbers reported by all clients in EntityStatePDUs, 

and may purge its buffer of all TerrainPatchUpdatePDUs with sequence numbers up to and 

including this minimum sequence number. 

This approach is effective if all entities are present and checked into the server before 

any TerrainPatchUpdatePDUs are generated. However, this protocol by itself does not support 

entities which join the simulation late - possibly after the server has flushed part of its buffer of 

TerrainPatchUpdatePDUs issued in the past. This protocol also requires the server to maintain 

knowledge of all entities participating in the simulation. The set of entities participating in a 

distributed interactive simulation is a dynamic one. Entities often join simulations late or exit 

early. Any change in the set of entities participating in the simulation must be reliably 

communicated to the server for this protocol to work effectively. 

 

2.6 Current Research on Reliable Broadcast 

 The Dynamic Terrain Update Problem can be generalized to the problem of reliable 

broadcast. Much research has been done in this area.31 ,32 ,33  The protocols presented in the 

literature are more general in that they allow for the broadcast of arbitrary data. Many of the 

 



 

 

protocols also allow for any host to issue broadcast messages. A common characteristic of all 

reliable broadcast protocols presented in the literature is the requirement of acknowledgment 

messages, either explicit or piggy-backed onto existing messages in the data stream. 

Acknowledgments imply that the broadcasting host know the number and identity of each of the 

message recipients. The ISIS34 protocol is an example of a reliable broadcast protocol in which 

group maintenance is important to the correct operation of the protocol. This is a complication in 

a real-time distributed interactive simulations where entities frequently join and exit the 

simulation. 

The Dynamic Terrain Update Problem has some characteristics which are not present in 

the more general cases addressed in the literature. The first characteristic is that the structure of 

the data contained in the broadcast messages is known. Secondly, there is a single known host 

which is performing the broadcasts - the dynamic terrain server. Client simulators are simply 

receivers of the broadcast messages and have no need themselves to perform reliable broadcast. 

Finally, there is no need for a server to maintain TerrainPatchUpdatePDUs which have been 

overridden by newer TerrainPatchUpdatePDUs for the same patch of terrain. The server need 

only maintain the current state of the terrain database. It serves no purpose to provide an entity 

with a terrain patch which is already stale. The following chapter introduces a protocol which 

exploits these problem domainspecific characteristics to provide an efficient mechanism for the 

reliable broadcast terrain update messages. 

 



3 The Checksum Tree Protocol 

The techniques discussed in the previous chapter attempted to provide absolute reliability of terrain 

updates using either explicit acknowledgments (HCI) or implicit acknowledgments (PBA). The shortcomings of 

these techniques however, has been shown to be intolerable. If the revision levels of all patches in the entire 

terrain database could be represented in some efficient manner, this information could be broadcasted by the 

dynamic terrain server in periodic "heartbeat" messages. A client simulation could check these revision levels 

against its own version of the terrain database to determine if any terrain update messages have been missed. If a 

client simulation has in fact missed terrain update messages, it may request a retransmission from the terrain 

server. The difficulty in this approach is that there are on the order of thousands of patches in even the smallest of 

terrain databases, so such a message would not be suitable for transmission in broadcast datagrams. 

The Checksum Tree is a novel approach to representing the state of the entire dynamic terrain database 

with a single 32 bit unsigned integer which contains the "checksum" for the database. Instead of relying upon 

acknowledgments from client simulations, the server will simply broadcast the checksum of the terrain database 

in periodic "heartbeat" messages at some predetermined interval. It will then become the responsibility of the 

client simulations to determine if they have missed any terrain update messages. Through a small number of 

queries and responses between a client and a server,  terrain 



 

 

 

patches which are not consistent between the client and server may be quickly identified. The server may then 

retransmit the TerrainPatchUpdatePDU which was missed by the client. 

One underlying assumption in this approach is that missed terrain update messages by clients are 

relatively infrequent. Another underlying assumption is that some latency (on the order of tenths of a second) 

is tolerable between the time in which a client simulation becomes aware that its version of the terrain database 

is not consistent with that of the server, and the time in which the inconsistency is corrected. 

In this approach, groups of patches are recursively aggregated into NxN nodes of a checksum tree. 

Associated with each node in the tree is a checksum. A leaf represents a patch of terrain and the associated 

checksum is the revision level of the patch. At the next higher level, a node consists of an NxN grid of patches. 

The checksum of such node is the sum of all the revision levels of each of the N2 patches which comprise that 

node. This process continues recursively until the entire database is covered, at which point a single checksum 

represents the entire database. The checksum of the root node is actually the sum of all the revision levels of 

each patch in the entire terrain database. A 32-bit unsigned integer used to represent the checksum allows for 

up to 232-1 terrain mutations before any ambiguity in the checksum can arise. 

There are two factors to consider when choosing N. With a larger N, fewer iterations are required 

between the client and the server to resolve which terrain patch is stale from the overall checksum. In fact, 

the number of iterations required is: 

  logN(number of patches in database) 

 



 

     Figure 3.1 

 

Another factor to consider is the server response to a client checksum query must fit into a single UDP 

datagram. Choosing N to be 10 while using 32-bit checksums, results in 400 bytes of information which 

can easily be accommodated by a UDP datagram, including any necessary packet header information. 

Figure 3.1 demonstrates the checksum tree concept using 2x2 patch grids for illustration purposes. 

Consider the Hunter-Ligget database, a 50Km by 50Km grid consisting of 100x100 500 meter 

patches. Assuming N=10, a three level checksum tree is required to cover the entire database. A four 

level checksum tree would cover a database as large as 500Km by 500Km. 

Under the Checksum Tree Protocol, servers would transmit terrain patch updates in a broadcast 

manner at the point of terrain mutation as in HCI and PBA, but would also 

 

 



 

broadcast periodic "heartbeat" messages at some determined interval. The heartbeat message 

would contain the checksum for the root node of the checksum tree, representing the entire 

database. When clients receive the heartbeat message, they may confirm whether their local 

copy of the terrain database is consistent with that of the server. If it is not, the resolution 

process is initiated. The following example illustrates how this may work where N is 10 and 

each node contains 100 (N2) checksums: 

I. A client disagrees with the checksum indicated by the heartbeat message. The client sends a query to the server 
asking for the 100 checksums which were used to calculate the checksum for the root node. 

 
2. The server responds by issuing a packet containing the 100 checksums used to calculate the checksum 

for the root node. 
 

3. The client determines that the checksum for child P of the root node is in disagreement with the server's 
checksum for that node. The client issues an query to the server for the 100 checksums which were used to 
calculate the checksum for child P of the root node. 

 
4. The server responds by issuing a packet containing the 100 checksums used to calculate the checksum 

for child P of the root node. 
 

5. The client determines that the checksum of child Q of node P is in disagreement with the server. The client 
sends a query to the server requesting the 100 checksums used to calculate the checksum for child Q of node P. 

 
6. In the case of a three level Checksum Tree, we are already at a leaf node of the tree and the stale patch has 

been identified. The server responds by transmitting the TerrainPatchUpdatePDU for that patch. 
 

The server issues repeated TerrainPatchUpdatePDUs in a broadcast manner so that if other 

clients missed the same original TerrainPatchUpdatePDU, they may benefit from the repeated 

broadcast as well. Note that repeated broadcasts of terrain update messages are idempotent because 

the message contains the revision level for the patch, and clients may ignore these messages if they 

are using the proper revision level for the patch. 

 



 

 

 

When a client receives a TerrainPatchUpdatePDU, it recalculates the entire database checksum by 

assigning the revision level for the updated patch to the corresponding leaf node of the checksum tree. The 

checksum tree is then ascended originating at the affected leaf, accumulating sums at each level until the root 

node is reached, at which point the checksum for the entire database is known. Note that as a client visits each 

node in the ascent of the tree, resuming the entire node is not necessary. The client may simply add the 

difference between the new checksum and the previous checksum of the affected child to the checksum for that 

node. 

The dynamic terrain server itself also maintains a checksum tree data structure. Each time a 

TerrainPatchUpdatePDU is issued by the server, the revision level for that patch of terrain is incremented and 

assigned to the corresponding leaf node its checksum tree. As in the case of the client, the tree is ascended to 

compute the root checksum. The root checksum is then available for transmission in heartbeat messages. 

 

3.1 A Detailed Example 

The following provides a detailed example of how the Checksum Tree Protocol is used between a 

client and a server to resolve missed terrain update messages. In the scaled-down example, the terrain database 

consists of 16 patches. Patches are aggregated into 2x2 nodes forming a three level checksum tree as illustrated 

in Figure 3.2. For illustration purposes, we establish a convention for labeling the nodes within a checksum 

tree. a is the 

 



label of the root node; b, c, d, e are the labels of a's children, and so on. Figure 3.2 illustrates 

the node labeling convention. 

 

Figure 3.2 

 

 

 

 

 

 

 

 

 

 

 

Consider the following scenario. A client's network connection is momentarily offline while the 

server transmits three terrain update messages. The checksum tree for the server at this point in time is 

illustrated in Figure 3.3. 

At time to the server transmits a heartbeat message indicating that the root checksum is 3. The 

client, having missed all terrain update messages due to being off-line, has a root checksum of 0. 

 



  Figure 3.3 

 

 

 

 

 

 

 

 

 

 

 

 

At time t1 the client receives the heartbeat message. Since the root checksums disagree, the client 

issues a request for the checksums of node a. At time t2, the server receives this request and responds with 

a = { 1, 0, 0, 2 }. Note that the checksums indicated by the response correspond to the checksum tree nodes 

{ b, c, d, e }. The client receives the response at time t3. It is determined by the client that the checksums 

for nodes { b, e } are in disagreement with the server. The client issues then issues two separate requests, 

one for node b and another for node e. At time t4 and t5, the server receives these requests and responds 

with b = { 0, 1, 0, 0 }, and e = { 1, 1, 0, 0 }, respectively. Upon receipt of the server responses, the client 

will determine that nodes 

 



 

 

 

{ g, p, q } are in disagreement with the server and issues requests for these nodes. Since these 

are leaf nodes of the tree, the server responds by retransmitting the terrain patch update 

message for each of these patches. 

As the client receives the terrain update messages for patches { g, p, q }, the associated 

revision numbers for these patches are assigned to the corresponding leaf nodes of the client's 

checksum tree. If all messages are received, the client's checksum equals the server's checksum 

when the next heartbeat message is received from the server. Otherwise, the resolution process is 

reinitiated to determine which patches remain stale. If any of the Checksum Tree Protocol 

messages are lost on the network, the root checksums are still in disagreement on the receipt of 

the next heartbeat message from the server, and the resolution process is reinitiated. 

 



4 The Fault Tolerant Dynamic Terrain Server Problem 

The Checksum Tree Protocol discussed in the previous chapter was shown to be a promising 

approach to providing efficient and reliable terrain updates. The Checksum Tree by itself 

however does not address the issue of fault tolerance. Other techniques must be established in 

conjunction with the Checksum Tree to afford the simulation a reliable terrain serving entity. 

This thesis purposes a concept called the "Virtual Server" which attempts to address this need. 

Although a detailed and correct implementation of a distributed fault tolerant terrain server is 

beyond the scope of this thesis, the following discussion is provided to stimulate thought on 

this subject. 

 

4.1 The Virtual Server Abstraction  

 In order to remain consistent with the DIS philosophy of no reliance on a central 

computer35 the dynamic terrain server must actually consist of two or more cooperating servers 

to ensure fault tolerance.36 The virtual terrain server is an abstraction employed by the client 

simulations to hide the fact that there may be multiple redundant servers coexisting on the 

network. The existence of multiple servers on the network, and the interaction between these 

servers is hidden from the client simulations. The client simulations receive terrain updates and 

heartbeat messages from, and issue queries to, the virtual server. 

 From a simulation client's point-of-view, a single, reliable, terrain serving entity exists on 

the network at all times. 

 



The abstraction of the virtual server is necessary to minimize the impact on clientside code. Advantages to 

this approach are both technical and political. From the technical perspective, the virtual server requires no 

client-side implementation of the protocol. This reduces likelihood of errors and provides a more elegant solution by 

encapsulating the virtual server complexity solely within the server code. From the political perspective, the concept 

will be more "sellable" to the DIS community because no special client-side modifications are necessary beyond the 

implementation of the Checksum Tree Protocol. Imposing the implementation of complicated protocol algorithms 

upon the simulation clients is likely to discourage participation in distributed simulations. 

The virtual server provides periodic heartbeat messages so that clients may ensure that their view of the 

terrain is up-to-date. The virtual server broadcasts terrain update messages when the terrain is mutated by a 

simulation event. Clients may communicate with the virtual server for the purposes of checksum discrepancy 

resolution, and late joining clients query the virtual server so that they have an up-to-date view of the environment. 

Figure 4.1 illustrates the virtual server concept and its relationship to simulation clients. 

It is undesirable for all of the servers within the virtual server to respond to client queries, issue heartbeat 

messages, and respond to terrain mutating events. Doing so would be both wasteful of network bandwidth and 

would impose unnecessary burden on the clients. Within the virtual server, a single server will be designated as the 

master. It is the master server only which responds to events which mutate the terrain surface, issues 

TerrainPatchUpdatePDUs, heartbeat messages, and responds to client queries for the 

 



       Figure 4.1: Virtual Terrain Server Concept 

Client Simulations 

 

 

 

purpose of checksum resolution and updating late joining entities. Passively monitoring network 

activity within the virtual server are one or more slave servers. If the master server were to fail, the 

slave servers would employ a leader election algorithm37 to elect a server to take over as the new 

master. Because it is expected that each server have a unique DIS entity identifier, the leader election 

algorithm may be as simple as selecting the server with the next higher entity address. In the case that 

the server with the highest identifier fails, the server with the lowest entity identifier would become 

the master. 

 



 

The servers which comprise the virtual server may not reside on the same local area 

network. This is to improve fault tolerance for distributed simulations conducted over a wide 

area network such as the Defense Simulation Internet. When designing the implementation of the 

virtual server for a wide area network, we can no longer assume that all servers within the virtual 

server will receive packets in the same order.38 This imposes some complications which we 

examine later. 

 

4.2 Consistency Among Servers 

A major complication imposed by the existence of multiple redundant servers is the fact 

that each server maintains its own local copy of the terrain database in its current form. It is 

imperative that each of the servers have a consistent view of the terrain. If a slave server were to 

take over as the master at some point, a lack of consistency could lead to unexpected changes in the 

terrain. To illustrate this, consider the following scenario: The master server has a patch of terrain 

containing a crater caused by a large bomb detonating at the surface of the terrain. The slave 

server's version of this patch however does not have the crater for that particular patch of terrain. 

The master server fails at some point in the future, and the slave takes over as the new master. If 

another simulation event caused a mutation to the same patch of terrain, the original crater will 

disappear when the new master server transmits a terrain update message for that patch of terrain. 

An intuitive solution to the consistency problem is to allow the servers to process terrain 

mutating events in parallel, updating their own local copies of the terrain database in 

 



 

 

response to terrain mutating simulation events. At first glance, this would appear to work if all 

the servers were running identical versions of the software. The problem with this approach is 

two-fold: 

1. If servers reside on different local area networks, they may not receive events in the 

same order. Applying events to a patch of terrain in different orders is likely to 

produce different results. 

2. The master server may miss a particular event which is received and processed by the 

slaves. This would result in inconsistencies between the master and slave servers. 

The above discussion has illustrated that the master server only should be responsible for 

maintaining the terrain database. The correct order in which events are applied to the terrain is 

defined as the order in which the events are received and processed by the master. If an event is 

missed by the master, any effects the event would have had on the terrain are simply lost. Slave 

servers will update their local copies of the terrain database in the same manner as client 

simulations - through the receipt of TerrainPatchUpdatePDUs issued by the master. Like clients, 

slave servers will use the checksum provided in the heartbeat message to verify that their local 

copy of the terrain database is consistent with the master server. 

The following discussion identifies two degrees of fault tolerance which we will refer to 

as Level I and Level II. The two levels of fault tolerance are defined and then the argument is 

made why Level II fault tolerance is not practical given the current state of networking 

technology. 

 



 

4.3 Level I Fault Tolerance 

The Level I virtual server consists of a single master server and one or more slave 

servers. Initially, the master server is in control. The slaves behave as clients by using the 

Checksum Tree Protocol to maintain terrain database consistency with the master server. Slave 

servers do not attempt to process any terrain mutating events and discard such events if they are 

received. The master is expected to issue heartbeat messages at some predetermined interval as 

per the Checksum Tree Protocol. The absence of heartbeat messages over some time window 

indicates to the slaves that the master has failed, and a new master should be elected from among 

the slaves. When the elected slave takes over as the new master, it will begin issuing heartbeat 

messages and processing terrain mutating events. 

Level I fault tolerance is vulnerable between the time in which the master server fails and 

a new master is elected. During this period, there is no server on the network behaving as the 

master. The effects upon the terrain of any terrain mutating events occurring during this period 

would be lost, and the simulation would temporarily degenerate to a static terrain simulation. 

Another complication arises if the master and slaves reside on separate local-area 

networks connected by gateways. The temporary saturation or failure of a router may lead a slave 

to incorrectly infer that the master has failed. This could result in multiple master servers. The 

virtual server would have to include a resolution protocol to deal with this condition. 

 



4.4 Level II Fault Tolerance 

Level I fault tolerance was shown to be vulnerable during the interval between when a 

master fails and a new master is elected. A higher degree of fault tolerance may be achieved by 

requiring the slave server to buffer terrain mutating events until it has been confirmed by the 

slave servers that the master has processed these events and has issued 

TerrainPatchUpdatePDUs accordingly. If the master server were to fail after receiving terrain 

mutating events but before issuing the corresponding TerrainPatchUpdatePDU, the newly 

elected master could take over without the loss of the effects of these events as these events 

have been saved by the slave server. 

An important factor to consider in man-in-the-loop simulations is the human perception 

of latency. It would be undesirable for events which mutate the terrain to have effects which are 

excessively delayed. It would be preferred that such events have no effect on the terrain at all, 

temporarily degenerating the simulation to a static terrain simulation. Level II fault tolerance 

requires slaves to save terrain mutating events so that they may be applied to the terrain in the 

event of a master server failure. However if the servers which comprise the virtual server are 

physically located on separate local area networks, the time in which a slave may infer that a 

master server has failed is on the order of seconds.39 Figure 4.2 illustrates the temporal 

relationships between the failure of a master server, the determination that the master server has 

failed, and the arrival of terrain mutating events in the interim. As a slave takes over as the new 

master, the slave should not apply buffered 

 

 



 

terrain mutating events which fall outside the human perception window, for human participants 

will perceive the delayed effects of these events. 

 Because the human perception window is on the order of tens of milliseconds in length,40 

and the master server failure detection window is on the order of seconds, it is unlikely that the 

added complexity of a Level II fault tolerant virtual server is justified. 

 

Figure 4.2 
 



5 Details of Implementation 

This chapter describes the details of implementation of the Checksum Tree Protocol and the Virtual 

Server. The implementations are described in terms of software objects used in the design and the protocol data 

units to be added to the DIS standard. 

 

5.1 The TerrainDB Class 

The TerrainDB class is used to provide an object-oriented41  interface to the dynamic distributed terrain 

database. Clients use the TerrainDB class to interface with the dynamic terrain server and also to acquire the 

terrain feedback information necessary to conduct their simulation. Figure 5.1 illustrates the TerrainDB class 

specification. 

The class constructor requires the path-name of the file which contains the initial state of the terrain 

database. Dynamic mutations to the terrain database are accomplished by the processNetUpdate method. When a 

client simulation receives a TerrainPatchUpdatePDU over the network interface, the PDU is handed off to the 

TerrainDB object for processing via a call to this method. 

The revision number of a particular patch of terrain may be queried via the getRevisionNumber method. 

Internally, this method is used by the TerrainDB class to avoid processing repeated TerrainPatchUpdatePDUs for 

the same patch and revision number combination. Such a TerrainPatchUpdatePDU may be received if the server 

retransmits a patch update for a client who missed the original broadcast. The servers 

 

 

 

 

 

 



 
 

use this method for generating the next higher revision number when sending out 

TerrainPatchUpdatePDUs for newly modified terrain patches. 

The remaining methods in this class pertain to the actual simulation of a vehicle. The 

placeVehicle class orients a ground vehicle on the terrain surface given a position, heading, and 

speed. This method returns the elevation component of the position, the velocity vector of the 

vehicle, and the three Euler angles of rotation required to rotate the vehicle from body 

coordinates to world coordinates. The getElevation method returns the elevation of the terrain at 

a particular location. The getPatchElevations method returns the entire grid of elevation 

samples for a particular patch of terrain. This method is used primarily by servers for the 

purpose of calculating terrain profiles in response to simulation events capable of mutating the 

terrain. . 

 
 

Figure 5.1 
class TerrainDB 
{ 
public: 
 
 TerrainDB( char *fileName ); 
 
 -TerrainDB(); 
 
 void placeVehicle( 
  double location[3], // X-Y in, Z out 
  double heading, // Radians clockwise relative to north(in) 
  double speed, // Meters/second (in) 
  double velocity[3], // Meters/second (out) 
  double eulers[3]); // Angles of rotation (out) 
 
void getElevation( double location [3] ); // X-Y in, Z out 
double getElevation( double x, double y ); 
void processNetUpdate( TerrainPatchupdatePDU *pdu ); 
int getRevisionNumber(int patchCoordX, int patchcoordY ); 
int getPatchNumElevationSamples( int patchCoordX, int patchCoordY ); 
int getPatchSampleSize( int patchCoordX, int patchCoordY ); 
void getPatchElevations( int patchCoordX, int patchCoordY, float *buf ); 
 
private: 
  … 
}; 

 



5.2 The Checksum Tree Class 

Both client simulations and terrain servers need to maintain a data structure representing 

the state of their local versions of the Checksum Tree. This is facilitated by the Checksum Tree 

Class illustrated in Figure 5.2. 

Both the clients and the servers create an instance of the ChecksumTree class for each 

active terrain database in the simulation. The ChecksumTree class constructor requires an integer 

specifying how many levels deep to create the tree. This value could be provided in the terrain 

database header or computed from the size of the terrain database. 

The setValue method allows the class user to set the revision level for a particular leaf 

of the tree. Within the setValue method, the ChecksumTree is recursively ascended42 

computing the new checksums at each level until the root node is reached. 

The getChecksums method allows the class user to query a particular node of the 

checksum tree for the checksums of the node's children. This is used in the checksum 

resolution process by the clients to determine which nodes of the checksum tree disagree 

Figure 5.2 
 
 

class ChecksumTree 
{ 
public: 
 ChecksumTree( int numLevels ); 
 
 --ChecksumTree(); 
  
 void setValue( int x, int y, unsigned long value ); 
 
 void getchecksums( int numLevels, unsigned short *nodeIds, 
  unsigned long checksums[100] }; 
  
 unsigned long getChecksum() { return checksum; }  
 
private: 
 
 unsigned long checksum; 
 int level; 
 
 ChecksumTree *children[100]; 
 
}; 
 



 
    Figure 5.3 
 
struct TerrainPatchUpdatePDU 
{ 
 PDUHeader  header; 
 SimulationAddress server; 
 unsigned short terrainDatabaseID; 
 unsigned short revisionNumber; 
 unsigned short patchCoordX; 
 unsigned short patchCoordY; 
 short   sampleSize; 
 short   _unused; 
 float   zValues[1]; // Varies 
} 

 
 

with the server's checksum tree. 

The getChecksum method returns the overall checksum for the entire checksum tree. This is 

used by clients to compare their database checksum with the checksum indicated by the terrain 

server in the heartbeat message. 

 

5.3 DIS Protocol Extensions 

The Checksum Tree Protocol requires a minimal amount of additions to the DIS protocol. 

The TerrainPatchUpdatePDU illustrated in Figure 5.3 is the mechanism by which an update to a 

patch of terrain is communicated to simulation clients. For simplicity and illustration purposes, 

this PDU represents the terrain within the patch by a grid of elevation samples. Better terrain 

representation schemes may be chosen, but this is beyond the scope of this thesis. Also, no 

cultural or feature data is present in this implementation. 

The terrain server periodically broadcasts "heartbeat" messages which contain the 

 
 

   Figure 5.4 
 
struct TerrainHeartbeatPDU 
{ 
 PDUHeader  header; 
 SimulationAddress server; 
 unsigned long  databaseChecksum; 
 unsigned short terrainDatabaseID; 
}; 



 
    Figure 5.5 
 
 #define MaxChecksumTreeLevels 10 
 struct ChecksumTreeQueryPDU 
 { 
  PDUHeader  header; 
  SimulationAddress client; 
_  unsigned short levelsPresent; 
  unsigned short node1ds[MaxChecksumTreeLevels]; 
 } 

root checksum for the terrain database. The TerrainHeartbeatPDU illustrated in Figure 5.4. 

Upon receipt of a TerrainHeartbeatPDU, client simulations compare the database 

checksum indicated by the PDU with the root checksum of their local instance of the 

ChecksumTree class. If the two values disagree, the client simulation has missed one or more 

TerrainPatchUpdatePDUs. The client must then query the server for the checksums of the root's 

children to determine which patch of terrain is stale. This is accomplished via the 

ChecksumTreeQueryPDU illustrated in Figure 5.5. 

Upon receipt of a ChecksumTreeQueryPDU, the server must respond with children's 

checksums of the requested node. This is accomplished via the ChecksumTreeResponsePDU 

illustrated in Figure 5.6. Both the ChecksumTreeQueryPDU and the 

ChecksumTreeResponsePDU identify the particular node of the checksum tree by the nodelds 

field. This field contains an array of nodeIds. The index into this array corresponds to the level 

of depth into the checksum tree. The levelsPresent field specifies how many levels of depth is 

contained in the array. 

    Figure 5.6 
 
  struct ChecksumTreeResponsePDU 
  { 
   PDUHeader  header; 
   SimulationAddress client; 
   unsigned short levelsPresent; 
   unsigned short  nodeIds[MaxChecksumTreeLevels]; 
   unsigned long checksums[100[; 
  }; 

 



The initial query issued by a client will contain 0 for levelsPresent. This indicates that the 

client wishes to acquire the checksums of the root's immediate children. Upon receipt of the 

ChecksumTreeResponsePDU from the server, the client may determine which of the server's 

root child checksum disagrees with the client's local version of the checksum tree. When a 

disagreement is found, another ChecksumTreeQueryPDU will be issued by the client. This time, 

levelsPresent will contain 1 and nodeIds[0] will contain the index of the node which disagreed. 

This process will continue until the server receives a ChecksumTreeQueryPDU for a leaf of the 

checksum tree. The server will respond by transmitting the TerrainPatchUpdatePDU for the 

patch of terrain which is represented by the particular leaf node of the checksum tree. 

 

5.4 Client-Side Procedural Code 

This section provides an example of procedural code used by clients for the 

implementation of the Checksum Tree Protocol. It is assumed that a client simulation will 

periodically (possibly at the beginning of each simulation frame) process all inbound PDUs. 

As the simulation loops through all pending inbound PDUs, various routines will be 

dispatched depending on the type of PDU received. This section illustrates a possible 

implementation of the dispatch routines for the Checksum Tree Protocol PDUs. 

 Upon receipt of a TerrainPatchUpdatePDU from the server, the client hands off the 

PDU to the TerrainDB object for processing. The corresponding leaf node of the checksum 



tree is set to the revision number of the patch. This is accomplished by the 

processTerrainUpdatePDU procedure illustrated in Figure 5.7. 

 

     Figure 5.7 
 
 static TerrainDB *tdb;   // Dynamic Terrain database object 
 
 static ChecksumTree *cstree; // Checksum Tree object 
 
 void processTerrainUpdatePDU( TerrainPatchUpdatePDU *pdu ) 
 { 
    tdb->processNetUpdate(pdu); 
    cstree->setValue(pdu->patchCoordX, pdu->patchCoordY, pdu->revisionNumber); 
 } 

 

 

Upon receipt of a heartbeat message from the server, the client will invoke the 

processHeartbeatPDU procedure illustrated in Figure 5.8. This procedure queries the checksum 

tree object for the root checksum. cstree is a pointer to the root node of the checksum tree 

object. If the root checksum disagrees with the checksum indicated by the 

TerrainHeartbeatPDU, a ChecksumTreeQueryPDU is formatted and broadcasted onto the 

network. The levelsPresent field of the ChecksumTreeQueryPDU is set to 0 to indicate that the 

client is interested in the checksums of the root's children. This initial query bootstraps the 

resolution process. Upon the receipt of a ChecksumTreeResponsePDU from the server, the 

client is able to determine if any disagreement exists between the client's version of the 

checksum tree and the server's version. This is accomplished by the processCTResponsePDU 

procedure illustrated in Figure 5.9. 



     Figure 5.9 
 
void processCTResponsePDU( ChecksumTreeResponsePDU *pdu ) 
{ 
 // Make sure we are interested in this response 
 if (pdu->client.site != site ||  pdu->client.host != host) 
  return; 
 
 // Get our version of the checksums 
 unsigned long checksums[100]; 
 cstree->getChecksums(pdu->levelsPresent, pdu->nodeIds, checksums); 
 
 // Find the one which disagrees with the server 
 for (int i = 0; i < 100; i++) 
  if (checksums[i] != pdu->checksums[i]) 
   break; 
  
 if (i < 100) 
 ( 
  // Format and spew another query message 
  ChecksumTreeQueryPDU qpdu; 
 
  qpdu.header.version = DISProtocolVersionCurrent; 
  qpdu.header.exercise = 1; 
  qpdu.header.kind = ChecksumTreeQueryPDUKind; 
  qpdu.client.site = site; 
  qpdu.client.host = host; 
  qpdu.levelsPresent = pdu->levelsPresent + 1; 
 
  for (int j = 0; j < pdu->levelsPresent; j++) 
   qpdu.nodeIds[j] = pdu->nodeIds[j]; 
  qpdu.nodeIds[pdu->levelsPresent] = i; 
 
  dis.sendPacket((char *)&qpdu, sizeof(qpdu)); 
 } 
}; 

 
The first step in this procedure is to determine if this response packet is directed towards 

the client in question. If this is the case, the checksum tree object is queried for the checksums 

corresponding to the node indicated by the ChecksumTreeResponsePDU. Each 

     Figure 5.8 
 
void processHeartbeatPDU( TerrainHeartbeatPDU *pdu ) 
{  
 if (cstree->getChecksum() != pdu->databaseChecksum) 
 {  
  // Issue a query message to the server 
  ChecksumTreeQueryPDU qpdu; 
 
 qpdu.header.version = DISProtocolVersionCurrent; 
 qpdu.header.exercise = 1; 
 qpdu.header.kind = ChecksumTreeQueryPDUKind; 
 qpdu.client.site = site; 
 qpdu.client.host = host; 
 qpdu.levelsPresent = 0; 
 
 dis.sendPacket((char *)&qpdu, sizeof(qpdu)); 
 } 
}; 
 



checksum is compared to that indicated by the response packet. If any disagreements are found, a 

ChecksumTreeQueryPDU is formatted to query for the next level of depth into the checksum 

tree. 

Note that the Checksum Tree Protocol is stateless in the sense that 

ChecksumTreeQueryPDUs and ChecksumTreeResponsePDUs contain all the information 

necessary for the clients and servers to react accordingly. Neither the clients nor the servers are 

required to maintain local state information regarding the state of the resolution process. This 

greatly simplifies the implementation on both the client and server sides. Furthermore, 

acknowledgments are not necessary for these PDUs. If a ChecksumTreeQueryPDU or a 

ChecksumTreeResponsePDU were to be lost, the resolution process would be re-initiated on the 

receipt of the next heartbeat message from the server because the root checksums would still be in 

disagreement. This fact suggests a criteria for the selection of the interval between heartbeat 

messages issued by the server. The interval should be large enough to allow for the entire 

resolution process between a client and a server to be completed. 

 

5.5 Server-Side Procedural Code 

Within the terrain server itself, a single procedure is necessary to implement the 

Checksum Tree Protocol. This procedure is invoked upon the receipt of a 

ChecksumTreeQueryPDU. The processCTQueryPDU is illustrated in Figure 5.10. 

 The first step in this procedure is to determine if the query is for a leaf node in the 

Checksum Tree. If the query is for a leaf node, the server will respond by transmitting a 

 



TerrainPatchUpdatePDU containing the information for the patch of terrain represented by the 

indicated leaf of the Checksum Tree. If the query is not for a leaf node, the server will respond 

by transmitting a ChecksumTreeResponsePDU containing the checksums of the children of the 

indicated node. 

If the levelsPresent field of the ChecksumTreeQueryPDU is equal to the depth of the 

ChecksumTree, the query is for a leaf node. The server must then determine the amount of 

memory required to store the TerrainPatchUpdatePDU by querying the TerrainDB object for the 

sample interval of the indicated patch. After memory is allocated to store the PDU, the TerrainDB 

object is queried for the elevation samples of the indicated patch. After the PDU header 

information is supplied, the packet is transmitted onto the network. 

If the levelsPresent field of the ChecksumTreeQueryPDU is less than the depth of the 

Checksum Tree, then the server must format and transmit a ChecksumTreeResponsePDU. These 

PDUs are fixed in size, so memory is allocated off the stack by the instantiation of a local 

variable. After filling out the appropriate header information, the Checksum Tree object is queried 

for the checksums of the node indicated by the ChecksumTreeQueryPDU. The formatted PDU is 

then broadcasted onto the network. 

 



      Figure 5.10 
 
void processCTQueryPDU( ChecksumTreeQueryPDU *query ) 
{  
 if (query->levelsPresent == ChecksumTreeDepth) 
 { 
  // Client has identified stale patch - send them a new terrain update 
  
   int patchCoordX = query->nodeIds[0] - (query->nodeIds[0]%10) + 
    (query->nodeIds[1]/10); 
   int patchCoordY = lO*(query->nodeIds[O]%1O) + (query->nodeIds[1]%10); 
 
  int numSamples = tdb->getPatchNumElevationSamples(patchCoordX,    
   patchCoordY); 
 
   int pduSize = sizeof(TerrainPatchUpdatePDU) +     
    sizeof(float)*numSamples; 
   TerrainPatchUpdatePDU *pdu = (TerrainPatchUpdatePDU *) 
    new char[pduSize]; 
 
  pdu->header.version = DISProtocolVersionCurrent; 
  pdu->header.exercise = 1; 
  pdu->header.kind = TerrainPatchUpdatePDUKind; 
  pdu->server = me;  
  pdu->terrainDatabaselD = 1; 
  pdu->patchCoordX = patchCoordX; 
  pdu->patchCoordY = patchCoordY; 
  pdu->revisionNumber = tdb->getRevisionNumber(patchCoordX, patchCoordY); 
  pdu->sampleSize = tdb->getPatchSamplesize(patchCoordX, patchCoordY);    
  tdb->getPatchElevations(patchCoordX, patchCoordY, pdu->zValues); 
 
  printf("Sending TerrainPatchUpdatePDUKind to update client\n"); 
  dis.sendPacket((char *)pdu, pduSize);  // Send update to clients 
  delete pdu; 
 } 
 else 
 ( 
  // Client needs to go one level deeper into the checksum tree    
  ChecksumTreeResponsePDU response; 
 
  response.header.version = DISProtocolVersionCurrent; 
  response.header.exercise = 1;  
  response.header.kind = ChecksumTreeResponsePDUKind;  
  response.client.site = query->client.site; 
  response.client.host = query->client.host;  
  response.levelsPresent = query->levelsPresent; 
 
   for (int i = 0; i < query->levelsPresent; i++) 
    response.nodeIds[i] = query->nodeIds[i]; 
 
  cstree->getChecksums(response.levelsPresent, response.nodeIds,    
  response.checksums); 
 
  printf("Sending ChecksumTreeResponsePDU to client\n");  
  dis.sendPacket((char *)&response, sizeof(response)); 
 } 
};



 

5.6 Virtual Server Implementation 

A single executable serves as both the master and slave servers. The flag within the server 

indicates to the server code whether the server is operating in master or slave modes. In slave 

mode, the server is simply a client simulation listening to the network for 

TerrainPatchUpdatePDUs and Checksum Tree Protocol PDUs to keep its local version of the 

terrain database consistent with the current master server. The slave server also expects to receive 

TerrainHeartbeatPDUs from the current master at some predetermined interval. If the slave fails 

to receive a TerrainHeartbeatPDU within some time-out period, the slave will assume the master 

server is off-line and initiate a protocol to become the new master. 

The master server listens to the network for events capable of mutating the terrain and also 

listens for ChecksumTreeQueryPDUs from client simulators. If a DetonationPDU is received, the 

master determines if any of patches of terrain were affected. If so, a TerrainPatchUpdatePDU is 

sent out for each affected patch. The master server also transmits a periodic TerrainHeartbeatPDU 

which contains the checksum for the root node of the checksum tree and informs slave servers that 

the master is on-line. 

The implementation of the virtual server outlined above requires that certain functions be 

scheduled for invocation in the future. The SchedQueue object illustrated in Figure 5.11 is the 

mechanism by which this is accomplished. The SchedQueue object has several advantages over 

the UNIX interval timer mechanisms. The SchedQueue object provides a single-threaded 

approach to providing time-out functions. The UNIX interval timer mechanisms invoke time-out 

functions in the context of a signal handler.43 Because of 

 



      Figure 5.11 
 
#ifndef SchedQueue_h  
#define SchedQueue_h 
  
#include <stdio.h> 
  
typedef unsigned long SchedEventId; 
  
typedef void (*SchedFunc)( void *arg ); 
  
class SchedQueue 
{ 
public: 
  
 SchedQueue(); 
 
 -SchedQueue(); 
 
 void tick( double currentTime ); 
 
 SchedEventId addEvent( SchedFunc func, void *arg, double time ); 
  
 void removeEvent( SchedEventId id ); 
  
private: 
  
 struct SchedEvent 
 { 
    SchedFunc  func; 
    void   *arg; 
    double  time; 
    SchedEventId id; 
    SchedEvent  *nextEvent; 
  
   }; 
 
   SchedEvent *queue; 
}; 
 
#endif 
 
this, applications may not access local data structures within the signal handlers for concurrency 

problems may arise unless complex concurrency handling code is employed. Another 

disadvantage to the UNIX interval timer mechanism is that the resolution of the timer is limited 

to the tick rate of the operating system which is typically 60Hz to 100Hz for most popular 

systems. A final advantage of the SchedQueue object is that it does not require context switching 

for the time-out functions to be invoked, thereby making it more efficient. 

The addEvent method of the SchedQueue object allows the class user to schedule the 

invocation of a function which has pointer to type void as a argument. The tick method is 



invoked by the class user at the top of each simulation frame.  It is during the call to tick that any 

functions which have timed-out are executed.  The removeEvent method allows the class user to 

remove a scheduled function invocation which was previously scheduled by a call to addEvent.  

 The main routine of the virtual server is illustrated in Figure 5.12  The first step is to 

determine whether the server is to be initially configured as the master or a slave.  The second 

command line argument determines the initial mode of the server (e.g. M for master, or S for 

slave).  

 The next step involves determining the server address form the third command line 

argument.  The server address corresponds to the SimulationAddress from the DIS protocol 

which is a integer tuple specifying a unique id for the site and host computer.

 



     Figure 5.12 
 
main( int argc, char **argv )  
(  
 if (argc != 4) 
  usage(argv[0]); 
 
 // To be the master, or not to be the master 
 switch (argv[2][0]) 
 ( 
 case 'M': master = 1; break; 
 case 'S': master = 0; break; 
 default: usage(argv[0]); 
 } 
 
 // Server address 
 int site, host; 
 if (sscanf(argv[3), °%d-%d", &site, &host) != 2) 
  usage(argv[0]);  
 me.site = site; 
  me.host = host; 
  
 // Open the terrain database 
 tdb = new TerrainDB(argv[1]); 
 
 // Create a checksum tree 
 cstree = new ChecksumTree(3); 
  
 // Start sending heartbeat messages if we are the master, otherwise we 
 // are a slave and will give the master 10 seconds to tell us he is alive 
 if (master) 
  sendHeartbeat(); 
 else 
  becomeMasterEventId = squeue.addEvent(becomeMasterEventFunc, 0, 10.0); 
 
 // Loop forever... 
 while (1) 
 ( 
  simTime = getTime(); 
  squeue.tick(simTime); // Tick the event scheduler 
    flushNetwork();   // Process PDUs 
  } 
} 
 

Both the master and slave servers create an instance of the TerrainDB and a 

ChecksumTree objects. The initial state of the terrain database is loaded from a dynamic 

terrain database file which is indicated by the first command line argument. 

If the server is being initialized as the master, the sendHeartbeat function (see Figure 

5.13) is called which transmits the initial TerrainHeartbeatPDU and schedules itself for 

future invocations. If the server is being initialized as a slave, the becomeMasterEventFunc 

(see Figure 5.13) is scheduled for invocation in the future. If a TerrainHeartbeatPDU is 

 



      Figure 5.13 
 
void sendHeartbeat()  
{ 
 TerrainHeartbeatPDU pdu; 
 
 pdu.header.version = DISProtocolVersionCurrent; 
 pdu.header.exercise = 1; 
 pdu.header.kind = TerrainHeartbeatPDUKind; 
 pdu.server = me; 
 pdu.databaseChecksum = cstree->getChecksum(); 
 pdu.terrainDatabaseID = 1; 
 
 printf("Sending heartbeat message\n"); 
 dis.sendPacket((char *)&pdu, sizeof(pdu)); 
 
 // Schedule next invocation 
 heartbeatEventId = squeue.addEvent( 
  (SchedFunc)sendHeartbeat, 0, simTime+HeartBeatInterval); 
} 
   
static void becomeMasterEventFunc( void* ) 
{ 
  printf("*** Becoming Master Server ***\n"); 
  master = 1; 
  sendHeartbeat(); 
) 

  

 received by the slave, this function is removed from the SchedQueue object and rescheduled 

 for further into the future. This is the mechanism by which slave servers detect the absence 

 of a master. 

   Once during every frame of the simulation a call is made to the flushNetwork routine 

 illustrated in Figure 5.14. The server is interested in different sets of inbound PDUs 

 depending on the current operating mode of the server. If the server is operating in slave 

 mode, the server is basically acting as a client simulator by using the Checksum Tree 

 Protocol to ensure its local copy of the terrain database is consistent with the master's. Any 

 time a PDU is received from the master server, the masterIsAlive routine is called which 

 defers the scheduled event for the slave to become the master. 

   The master server responds to DetonationPDUs by calling processDetonation. This 

 route assesses any terrain damage and transmits TerrainPatchUpdatePDUs accordingly. If 

 



 
 
 

the master server receives a TerrainHeartbeatPDU from another master, the server yields to the 

other master and becomes a slave server. If the master receives a ChecksumTreeQueryPDU from 

a client simulator, it must respond by issuing a ChecksumTreeResponsePDU or a 

TerrainPatchUpdatePDU. This is accomplished by the processCTQueryPDU illustrated in Figure 

5.10. 

 



       Figure 5.14 
 
static void flushNetwork()  
(  
 char buffer(1500); 
 
 // Read all PDUs which have accumulated since the last frame 
 while (dis.readPacket(buffer, sizeof(buffer)) > 0) 
 { 
  PDUHeader *header = (PDUHeader *)buffer; 
 
  if (master) 
  { 
  // The master handles DetonationPDUs and ChecksumTreeQueryPDUs. 
  // If we receive a heartbeat from another master, we yeild to them 
 
   switch (header->kind) 
   (  
   case DetonationPDUKind: 
    processDetonation((DetonationPDU *)buffer);  
    break; 
   case ChecksumTreeQueryPDUKind: 
    processCTQueryPDU((ChecksumTreeQueryPDU *)buffer); 
    break; 
   case TerrainHeartbeatPDUKind: 
    TerrainHeartbeatPDU *pdu = (TerrainHeartbeatPDU *)buffer; 
    if (pdu->server.site != me.site || pdu->server.host != me.host) 
    ( 
     // Someone else thinks they are the master, so yield to them  
     master = 0; 
     becomeMasterEventId = squeue.addEvent(  
      becomeMasterEventFunc, 0, 
      simTime + 2.0*HeartBeatInterval);   
     squeue.removeEvent(heartbeatEventld); 
    } 
   } 
  }   
  else  
  ( 
   // Slaves basically act as clients, getting terrain updates from 
   // the master 
 
   switch (header->kind) 
   { 
   case TerrainPatchUpdatePDUKind: 
    processTerrainUpdatePDU( (TerrainPatchUpdatePDU *)buffer ); 
    masterIsAlive(); 
    break; 
   case TerrainHeartbeatPDUKind: 
    processHeartbeatPDU( (TerrainHeartbeatPDU *)buffer ); 
    masterIsAlive(); 
    break; 
   case ChecksumTreeResponsePDUKind: 
    processCTResponsePDU( (ChecksumTreeResponsePDU *)buffer ); 
    masterIsAlive(); 
    break; 
   } 
  } 
 } 
} 

 
 
 



6 Testing the Implementation 
 

This chapter describes the testing methodology and results for the Checksum Tree 

Protocol and the Virtual Server. Testing the Checksum Tree Protocol involves the interaction of 

four distributed applications: a stealth device, a ground vehicle simulation, a dynamic terrain 

sever, and a PDU generation tool. Each of these applications will be described in turn. Three 

different testing scenarios will be described followed by a discussion of the results of each 

scenario. 

 
6.1 The Stealth Simulator 
 

In order to verify the effectiveness of the Checksum Tree Protocol, some mechanism must 

be employed to provide a real-time three-dimensional view into the virtual world created by a 

distributed interactive simulation. This device must be capable of rendering the terrain and features 

of the virtual world, and also any vehicles participating in the simulation. A Stealth simulator is 

such a device. A Stealth is referred to as such because it is a passive observing participant in the 

simulation. The Stealth view itself does not correspond to any particular vehicle in the simulation, 

and does not generate any EntityStatePDUs. For this reason, a Stealth is invisible to other 

simulators. Features of a typical Stealth include the following: 

• The capability to "teleport" to any location within the terrain database and assume any 

orientation. 

 
 



 
• The capability to tether the viewport to any given vehicle in the simulation 

• The capability to "free fly" about the terrain database. 

 A Stealth simulator was developed as an independent study project in conjunction with this 

thesis. The Rybacki Stealth requires a Silicon Graphics workstation equipped with a hardware 

z-buffer. As tested on the SGI Crimson Extreme platform (50mhz R4000), the Stealth was capable 

of maintaining real-time frame rates (> 15Hz) with a 20 degree field of view, a terrain horizon of 5 

kilometers, and several vehicles within the field of view. Figure 6.1 illustrates a typical Stealth 

view with terrain and vehicles on the Ft. Hunter-Ligget terrain database. 

 

6.2 The Truck Simulator 

A ground vehicle simulator was also developed to participate in the testing. Ground vehicles must 

correctly follow the terrain surface in a simulation. The Truck simulator is a workstation-based 

simulation which enables one to drive a truck about the terrain database. This simulator does not 

attempt to emulate the dynamics of any real vehicle, its sole purpose is to illustrate the 

effectiveness of the Checksum Tree Protocol. The Truck simulator supports the following 

commands: 

Command Function 
s N Set the speed of the vehicle to N meters per second 
r Turn right a little 
R Turn right a lot 
1 Turn left a little 
L Turn left a lot 
q Exit the simulation 

 



 

Figure 6.1 A Stealth view of terrain and vehicles on the Ft. Hunter-Ligget terrain
database 



 

6.3 The Dynamic Terrain Server 

The dynamic terrain server monitors the network awaiting events which are capable of 

modifying the terrain. The detonation of a munition is an example of such an event. If a 

detonation is sufficiently close to the terrain surface, the terrain server will create a crater in the 

terrain under the point of detonation and broadcast a TerrainPatchUpdatePDU to update the 

simulation clients. Note that a realistic implementation of a dynamic terrain server would take into 

account the type of warhead and soil attributes in the computation of terrain damage. This level of 

modeling is beyond the scope of this thesis. The simplistic terrain server illustrated here is 

adequate for the purposes of illustrating the concepts presented in this thesis. 

6.4 The PDU Generation Tool 

PDUGEN is a tool which generates arbitrary PDUs and broadcasts them onto the DIS 

network. PDUGEN reads an ASCII file which describes PDU structures using a simple 

data-notation language. The user is presented with the fields of the PDU for which PDUGEN is to 

generate. PDUGEN provides controlled stimulus to the dynamic terrain server by generating 

DetonationPDUs in the absence of an actual simulator capable of doing so. 

The testing scenarios involve orienting the Stealth viewport so that the Truck simulator is 

within the field of view. A DetonationPDU is issued by PDUGEN which results in a crater in the 

pathway of the truck. The successful receipt of a TerrainPatchUpdatePDU 

 



 
 
 
by the Stealth simulator manifests itself as a crater appearing in the appropriate location in the terrain. In the 

case of the Truck simulator, successful receipt of a TerrainPatchUpdatePDU manifests itself as the truck 

correctly following the terrain surface into the crater, and is visualized from the Stealth. 

 

6.5 Checksum Tree Testing Scenarios 

Three testing scenarios were devised to test the Checksum Tree Protocol. The first form involves contriving 

a condition where at least one of the simulation clients misses a TerrainPatchUpdatePDU, forcing the use of 

Checksum Tree Protocol to become updated. The second form of testing involves bringing a simulator 

on-line after the server has modified the dynamic terrain database. The final form of testing involves 

restarting the dynamic terrain server mid-course in a simulation. 

 

6.5.1 Scenario I 

In order to exercise the Checksum Tree Protocol, at least one of the simulators must miss the 

TerrainPatchUpdatePDU which is issued by the server at the point of detonation. Because it is difficult to 

contrive such a condition, the terrain server code was modified so that the TerrainPatchUpdatePDU would 

not be sent out at the point of detonation. This guarantees that both the Stealth simulator and the Truck 

simulator miss the TerrainPatchUpdatePDU, which was actually never transmitted. The two client simulators 

would become aware of this condition on the receipt of the next TerrainHeartbeatPDU from 

 



 
the terrain server because the database checksums disagree. Both clients then initiate the 

resolution process using the Checksum Tree protocol. 

 

6.5.2 Scenario II 

Another form of testing involves bringing the simulators on line after the terrain 

server has received a DetonationPDU and transmitted a TerrainPatchUpdatePDU 

accordingly. Upon receipt of the first TerrainHeartbeatPDU from the server, the clients 

initiate the resolution process with the server and become updated. 

 

6.5.3 Scenario III 

The final form of testing involves restarting the terrain server mid-course in a simulation, 

after the terrain has been modified. Although not practical in a real simulation, this test exercises 

the Checksum Tree protocol and illustrates its effectiveness. Our model assumes that the unique 

correct state of the terrain is the one held by the terrain server. When the server comes on-line 

after a modification, the clients "regress" to the original state of the terrain. 

 

6.5.4 Checksum Tree Testing Results 

The results of Scenario I showed that the Checksum Tree protocol was successful in 

bringing the clients up-to-date in an efficient manner. There was little perceived latency between 

the time of detonation and the time in which the crater appeared on the Stealth. At 

 



what was perceived to be same instant in time, the Truck simulator began to follow the updated 

terrain surface into the crater. 

. Since human perception of latency is an important issue in man-in-the-loop simulations, the 

interval between heartbeat messages from the terrain server must be chosen to be sufficiently small. This 

parameter imposes a lower bound on the latency between the simulation event which mutates the terrain, 

and the time in which the updated terrain information is available to the simulator in the event the initial 

broadcast of the terrain update message is lost. The latency is less of an issue for simulators which are 

not operating geographically close to the point of terrain mutation and hence are not currently using the 

affected patch. 

An interesting discovery was made while testing the Checksum Tree protocol as described 

above. Since both clients miss the initial TerrainPatchUpdatePDU, they both initiate the resolution 

process on the receipt of the next TerrainHeartbeatPDU from the server. However, only one client 

carries the resolution process to full course. The first client which elicits a retransmission of the 

TerrainPatchUpdatePDU from the server benefits all other clients which missed the same initial 

TerrainPatchUpdatePDU. As the slower clients receive and process the TerrainPatchUpdatePDU from 

the server, their Checksum Trees become consistent with the server's causing the resolution process to 

be terminated early. Figure 5.9 illustrates the processCTResponsePDU procedure used by the clients. 

When the server responds with a ChecksumTreeResponsePDU for a client's query, the checksums 

contained in the server's message become consistent with the client's local copy 

 



 
 
of the Checksum Tree, terminating the resolution process. This feature of faster clients 

benefiting slower clients when the same TerrainPatchUpdatePDU is missed will be particularly 

useful in wide-area distributed simulations where an entire leg of the network is momentarily 

off-line, causing multiple clients to miss the same TerrainPatchUpdatePDUs. 

The results of testing Scenario II were equally impressive. The Stealth simulator was 

started after the time of detonation. When the Stealth rendered its initial view of the terrain, the 

crater was already visible. Likewise, initializing the Truck simulator to start at a location within 

the crater resulted in the Truck being correctly oriented on the surface of the terrain within the 

crater. This result meets the goal that the protocol support entities which join the simulation late, 

possibly after the terrain has been modified by the terrain server. 

Scenario III is not a practical one yet it illustrated the effectiveness of the Checksum 

Tree Protocol. Restarting the dynamic terrain server mid-course in a simulation results in the 

terrain database reverting from its mutated form to its initial state. From the vantage point of the 

Stealth, craters disappear, and vehicles in craters pop up to the original surface of the terrain. 

This demonstrates that all clients successfully become updated via the Checksum Tree Protocol. 

 
6.6 Virtual Server Testing Scenario 
 

The Virtual Server implemented for this thesis is a Level 1 fault tolerant server (see 

Chapter 4) consisting of a master server and a single slave server. Testing the Virtual Server 

involves stopping the master server process after the dynamic terrain database has been 

 



modified, and ensuring that the slave server takes over as the master retaining any mutations to 

the terrain database. 

A master server will be started on one workstation and the slave server on another. 

PDUGEN is used to issue a DetonationPDU causing the master server to modify the terrain 

database. Like client simulations, the slave server uses the Checksum Tree Protocol to maintain a 

consistent version of the terrain database with the master server. A control-C will be issued to the 

master server process causing it to terminate. The slave server is designed to take over as the 

master if it does not receive a heartbeat message from the master within two heartbeat intervals. 

Diagnostic "printf" calls have been inserted into the server code to indicate changes in 

master/slave status. After stopping the master server process, the Stealth is brought on-line in a 

location proximate to the point of detonation. If the slave server correctly takes over as the 

master and has a consistent version of the terrain database with the former master, the new 

master server will update the Stealth's terrain database via the Checksum Tree Protocol. This is 

visualized by the Stealth out-the-window view. 

 

6.6.1 Virtual Server Testing Results 

Within two heartbeat intervals after stopping the master server process, the slave server 

printed the diagnostic indicating that it was switching to master mode. The Stealth was then 

brought on-line. Upon the receipt of the first heartbeat message from the new master, the 

Stealth initiated the Checksum Tree resolution process and was updated by the new master 

server. This visually manifested itself as a crater appearing in the field-of-view of the Stealth 

immediately upon initialization. 

 



7 Conclusions and Suggestions for Further Research 
 

The Checksum Tree Protocol has been shown to be a viable approach to solving the reliable dynamic terrain 

update problem. This constitutes a significant contribution to the DIS community. When a standard terrain 

representation scheme is defined which meets the needs of image generators, man-in-the-loop simulators, and 

computer generated forces, the Checksum Tree will be available to ensure reliable and efficient updates to distributed 

dynamic terrain databases. The result will be an improved realism for simulations which will benefit training, virtual 

prototyping, and entertainment applications. 

Although much research has been done in the area of reliable broadcast, most of the purposed approaches rely 

on receiver-generated acknowledgments. The large number of potential receivers in a distributed interactive 

simulation coupled with the real-time nature of such simulations makes the existing reliable broadcast protocols 

impractical for supporting the needs of distributed dynamic terrain. The Checksum Tree is not a general protocol 

which supports reliable broadcast of arbitrary data. Instead, the Checksum Tree is a problem domain specific approach 

which exploits knowledge of the structure of the data being broadcast. Advantages to this approach are summarized 

below: 

1. Clients receive terrain updates instantly and simultaneously at the point of terrain mutation via a broadcast 

PDU. 

2. The impact on network bandwidth is minimized because most clients receive the information from a single 

broadcast. 

 



 

3. Servers need not know the identity and number of clients because no "check - in" 

protocols are used. 

4. The protocol is stateless, simplifying the client-side application code. This 

reduces coding errors and makes the protocol more "sellable" to simulation 

developers. 

5. Requires minimal modification to the existing DIS standards. 

6. The first client which elicits a retransmittal by the server benefits slower clients 

which missed the same terrain update message. 

 

The Virtual Sever successfully created the abstraction of a reliable terrain serving entity 

on the network. A redundant server is required to remain consistent with the DIS philosophy of 

no reliance on a central computer for event scheduling for conflict resolution. The Virtual Server 

abstraction simplifies the client-side applications because the clients appear to be communicating 

with a single reliable server. Terrain database consistency among the members of the Virtual 

Server is promoted when the Virtual Server is used in conjunction with the Checksum Tree 

Protocol. 

 

7.1 Checksum Tree Technical Considerations 

The interval between heartbeat messages from the terrain server must be chosen to be 

sufficiently large as to allow for missed terrain update messages to be completely resolved 

between the client and the server. This parameter also determines the latency between when a 

client realizes that it has missed a terrain update message, and the time in which the resolution 

process is initiated. For this reason, this parameter should not be chosen to be too large. Studies 

should be conducted to determine the optimal value for this parameter 



considering the nature of the simulation exercise, number of simulators and entities 

participating in the simulation, and the simulator and network hardware available. 

Throughout the course of this research, it has been assumed that the terrain database is 

simply a triangular mesh represented by a grid of elevation samples, ignoring any cultural or 

feature data. Terrain representation schemes must be devised which allow network transmission 

of terrain feature data as well. This implementation also assumed that updates to a patch of terrain 

fit into a single PDU. Dynamic mutations to the terrain database (e.g. craters, berms, holes) 

require a much higher resolution representation than the 125 meter elevation grid used by most 

SIMNET based terrain databases. It may be determined in the future that a sufficient fidelity 

terrain representation scheme would require terrain patch updates to span multiple PDUs. This 

would require extending the Checksum Tree Protocol to deal with this complication. The tradeoff 

between smaller patch sizes versus multiple PDUs for a terrain patch update should be studied. 

 

7.2 Virtual Server Technical Considerations 

Considering the current state of network technology, it is impractical to pursue Level II 

fault tolerance for redundant servers connected by a wide-area network. The delays which may 

accumulate as messages pass through gateways prevents a slave server from reliably determining 

that a master is off-line within a reasonable time window. As networking hardware improves over 

time or as new technologies evolve, this constraint may disappear in the future. 

 



The dynamic terrain server demonstrated in this thesis was a simplistic one designed solely for the purposes of 

evaluating the Checksum Tree Protocol and the Virtual Server concept. This simple server created craters in 

the terrain as a result of detonations sufficiently close to the terrain surface. A more realistic server would take 

the warhead type and soil attributes into account when assessing the impact of a detonation on terrain. 

Furthermore, other terrain mutating events such as a vehicle colliding with the terrain should be handled as 

well. 

An even more advanced terrain server would allow for entity initiated modifications  

to the terrain. As an example, a bulldozer may wish to create a berm. Such a scenario would likely require a 

distributed locking protoco144 to handle the case of multiple entities trying to simultaneously modify the 

same patch of terrain. 
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