Virtual Reality Scene Generator
(VRSG) Version 7 User’s Guide

AN NARO OVRD CNTL
. 17R LLlSS;gl73 91339

o

Geospecific simulation with game quality graphics™ N\ ~simu | ation

Copyright © 2025, MVRsimulation Inc. All rights reserved.
Printed in the United States of America. February 2025

MVRsimulation, the MVRsimulation logo, and VRSG (Virtual Reality Scene Generator) are registered trademarks.
”Globaldesic” and the phrase "geospecific simulation with game quality graphics" are trademarks of MVRsimulation Inc.
MVRsimulation's round-earth VRSG terrain architecture (“Globaldesic”) is protected by U.S. Patent 7,425,952.

Portions of MVRsimulation Virtual Reality Scene Generator physics-based IR sensor modeling capability are licensed from
Technology Service Corporation. Copyright © 2013 Technology Service Corporation.

ReallR is a trademark of Technology Service Corporation.

Portions of MVRsimulation Virtual Reality Scene Generator 3D ocean simulation include Triton 3D ocean technology,
which is copyrighted and proprietary to Sundog Software, LLC.

Portions of MVRsimulation Virtual Reality Scene Generator volumetric cloud capability are copyright © 2002 Mark J. Harris
and The University of North Carolina at Chapel Hill. Permission to use, copy, modify, distribute and sell this software and its
documentation for any purpose is hereby granted without fee, provided that the above copyright notice appear in all copies
and that both that copyright notice and this permission notice appear in supporting documentation. Binaries compiled with
this software may be distributed without any royalties or restrictions.

Portions of MVRsimulation FBX conversion utility use the Autodesk® FBX® library © 2011 Autodesk, Inc. Autodesk and
FBX are registered trademarks of Autodesk, Inc.

Portions of MVRsimulation software installation uses portion(s) of the 7-Zip program (www.7-zip.org), which is licensed
under the GNU LGPL license.

Portions of MVRsimulation software use TinyXML (www.sourceforge.net/projects/tinyxml) and subject to the zlib/libpng
license.

Portions of MVRsimulation software use portions of Infragistics Ultimate UI/UX Toolkit
www.infragistics.com/products/ultimate

Esri Products or Services referenced in this work are trademarks, service marks, or registered marks of Esri in the United
States, the European Community, or certain other jurisdictions.

Portions of MVRsimulation Terrain Tools software use the following Open Source software:
Twisted 10.1 Copyright © 2001-2010 (labs.twistedmatrix.com/)
Zope.interface 3.6.1 (www.zope.org/Products/Zopelnterface)
Jinja2 2.5.2 Copyright © 2009 by the Jinja Team. (jinja.pocoo.org)
Chromium Embedded Framework, revision78 Copyright © 2008-2009 Marshall A. Greenblatt.
Portions Copyright © 2006-2009 Google Inc. (code.google.com/p/chromiumembedded).

Third Party legal notices are provided in an appendix of the associated MVRsimulation User’s Guide.

OpenStreetMap (OSM) © OpenStreetMap Foundation.
Portions of the 3D content libraries contain OSM data and subject to the Open Data Commons Open Database License
(ODbL) v1.0.

Gemalto and SafeNet are trademarks of Thales.
Microsoft is a registered trademark, and Windows is a trademark of Microsoft Corporation.
All other trademarks are owned by their respective companies.

Portions of the 3D content libraries are licensed from aXYZ design. Copyright © 2007 aXYZ design.
Portions of the 3D content libraries are licensed from X-trusion. Copyright © 2007 X-trusion.
Portions of the 3D content libraries are licensed from Maxar SecureWatch. Copyright © 2021 Maxar.

The copying and installation of files and usage of MVRsimulation software is subject to the MVRsimulation Software
License Agreement (SLA). MVRsimulation’s SLA is enclosed in this document and can be viewed at
www.mvrsimulation.com/howtobuy/license_agreement policy.html.

MVRsimulation Inc.
57 Union Avenue, Sudbury, MA 01776 USA
Phone: 617-739-2667 Fax: 617-249-0151

Website: www.mvrsimulation.com Email: sales@mvrsimulation.com

Contents

1 INTRODUCTION 1-1

2 EXPLORING THE VRSG SYSTEM 2-1

3 RUNNING VRSG WITH SYNCHRONIZED CHANNELS 3-1
4 LOADING CONTENT INTO VRSG 4-1

5 CONFIGURING MODELS AND EVENTS 5-1

6 DEVELOPING VRSG PLUGINS 6-1

7 WORKING WITH SENSOR-VIEW MODES AND
PHYSICS-BASED IR 7-1

8 CONVERTING FBX AND OPENFLIGHT FORMATS
TO MVRSIMULATION RUNTIME FORMATS 8-1

9 MVRSIMULATION 3D MODEL FORMATS 9-1

10 PREVIEWING MODELS, EFFECTS, AND TERRAIN 10-1
11 MANIPULATING TEXTURES 11-1

12 3D MODEL CONTENT 12-1

13 INTEGRATING 3D SOUNDS 13-1

14 USING 3D CHARACTERS IN VRSG 14-1

15 CONFIGURING VRSG FOR SIMULATING UAVS 15-1

16 VRSG RADAR SIMULATION 16-1

iv MVRsimulation VRSG User’s Guide

17

18

USING VRSG WITH VR SYSTEMS, TRACKERS,
AND SIMULATED MILITARY DEVICES 17-1

DISTORTION CORRECTION AND EDGE BLENDING
WITH VRSG 18-1

VRSG KEYBOARD FUNCTIONS A-1
UTILITIES DELIVERED WITH VRSG B-1
VRSG REGISTRY VARIABLES C-1

READ APl FOR VRSG TERRAIN TILES D-1
VRSG SETDATAPDU INTERFACES E-1
CIGlI SUPPORT F-1

COMMUNICATION PORTS G-1

ADDING CITYENGINE GENERATED MODELS
TO 3D TERRAIN H-1

MVRSIMULATION LICENSE AND WARRANTY
AGREEMENT I1-1

CHAPTER 1

Introduction

MVRsimulation® Virtual Reality Scene Generator® (VRSG®) is a state-of-the-art, real-time
computer image generator (IG) designed to visualize geographically expansive and detailed
virtual worlds on Windows PCs. VRSG provides real-time single- or multiple-channel
visualization of virtual environments, dynamic moving models, and special effects using
Microsoft DirectX commercial standards.

i/ e = - 2
Real-time VRSG screen capture of an F-15E entity in flight over the virtual Okinawa airport on
MVRsimulations’ new 3D terrain of Japan.

VRSG is a component of MVRsimulation’s rapid virtual world terrain creation and
visualization technology. With MVRsimulation’s technology, users can build and visualize at
60 Hz frame rates virtual worlds created with real-world photographic imagery (such as aerial
and satellite imagery), elevation feature data, and pattern-of-life scenarios. The goal of this
technology is to deliver geospecific simulation with game quality graphics™ on displays that
range from VR devices, simulated military equipment, laptop and desktop computers, to
immersive training domes.

VRSG is an executable-ready Microsoft-based render engine that does not require
compilation for use. It uses Windows, DirectX, and Visual C++. Configuration files provide
you with the ability to control basic components of the render engine, as described in the
chapters “Configuring Models and Events” and “Integrating 3D Sounds.” To evolve VRSG,
MVRsimulation routinely interviews its customers and determines features that are most

1-2 MVRsimulation VRSG User’s Guide

needed and then adds them to the product. MVRsimulation attempts to aggregate the most
common features into VRSG regularly, which enables all customers to benefit from the
advances initiated by other and complementary users.

To supplement the render engine with low-level features not available in core VRSG, you can
use the plugin interface to compile in your own features, as described in the chapter
“Developing VRSG Plugins.”

VRSG’s core features

VRSG supports the typical features required for image generators used in flight, ground
vehicle, and infantry training simulators, and many other applications. IGs are typically
driven by users’ simulator host model, such as a flight model. VRSG renders a virtual world
as it is specified by host parameters such as location and field-of-view.

The rest of this section describes some of VRSG’s core image generator features.

Lights and lighting
VRSG lighting features include:

o Full-featured, high performance light points.
e High performance light lobes with per-pixel axial and radial attenuation.
e Dynamic lighting.

Light points

Light points are small self-luminous objects that do not cast illumination on the surrounding
scene. They are generally used to model airfield lighting systems (such as VASI, PAPI, and
taxiway lights). VRSG supports full-featured light points; processing runs entirely in vertex
shader programs downloaded to the graphics chipset, providing exceptional performance.

VRSG light points were developed with input from subject matter experts, such as
commercial and military pilots. Light point features include:

Per-light color and intensity; no
performance degradation for varying
color and intensity within a light
string.

Per-light phase shift with no
performance degradation for varying
phase within a light string.

Period, duty cycle, rotation rate.

Real-world size rendered perspective-
correct.

Automatic luminance compensation
for size-clamped lights; prevents
volume clamped lights from appearing
brighter at further ranges.

Automatic ground clamping and
elevation placement at load time.

Ability to disable directional attenuation
on a per-edge basis to support sharp
transitions for realistic VASI and PAPI
lights.

Visibility range as a function of light type
and weather conditions; separate from
terrain visibility.

Direction specified in azimuth/elevation.

Independent horizontal and vertical beam
angles.

ASCII description file for light
customization apart from the terrain
database.

Minimum size.

Chapter 1 Introduction 1-3

All light points, including directional light points with unique per FOV edge attenuation
behavior, run entirely in the vertex shader, providing exceptional performance.

Light lobes

Light lobes cast light, illuminating anything 3D in front of them (like vehicle headlights) or
around them (like street lights, flashlights, or searchlights). VRSG provides realistic light
lobes that yield per-pixel radial attenuation and axial attenuation. VRSG light lobes are
flexible enough to support landing lights, taxi lights, headlights, and searchlights. VRSG light
lobes do not require multiple database render passes or hardware that can store alpha
information in the frame buffer. Instead, VRSG light lobes are rendered single-pass, which
affords minimal performance degradation when enabling a light lobe. You can configure
multiple concurrent, independent light lobes. You can also attach a light lobe to a model as
discussed in the chapter “Configuring Models and Effects”. No drastic impact on fill rate or
geometry processing penalties is incurred when enabling light lobes. VRSG supports
concurrent, steerable light lobes for video cards that support Pixel Shader Model 5.0.

Dynamic lighting

VRSG supports an optimized dynamic lighting pipeline, which uses per-vertex color blended
with per-polygon material, combined with ambient lighting conditions and directional light
sources for efficient and convincing dynamic lighting effects. Per-pixel lighting provides true

Phong shading and interpolates and normalizes both the surface normal vector and the
reflectance vector for per-pixel ambient, diffuse, and specular contributions to lighting.

Normal maps can also be used to provide per-pixel perturbation of a polygon surface normal
vector. Specular maps can be used to create reflective surfaces that reflect the sky model.
These techniques are useful for building windows or aircraft canopies.

VRSG supports advanced multi-texture techniques such as shadow maps and light maps.
Models can encode a shadow map and a light map together in a single second texture applied
to faces. In daytime mode, a shadow map modulates the base texture providing more
variability in intensity. In nighttime mode, the light map creates a diffuse local light source,
simulating the effects of illuminated window of a building, or a local spotlight or floodlights.

Environment and weather

VRSG supports advanced environment and weather effects such as:

e Multiple atmospheric layers, ground fog, and haze.

e 3D ocean sea states, wave motion and wakes, vessel surface motion, accurate
environment reflections.

¢ Sun angle-dependent haze color and density.

e Rain and snow.

e Volumetric ray-traced clouds, which are procedurally generated or user defined and
controlled. Clouds can cast shadows on the terrain.

1-4 MVRsimulation VRSG User’s Guide

:;..' Y
VRSG real-time littoral view of Costa Verde, Spain, showing the 3D ocean wave fall-off and transparency
at the shoreline.

VRSG uses an ephemeris model to calculate sun position, moon position, star position,
and moon phase from date, time, and geographic location. Lighting conditions can also be
automatically calculated from date, time, and geographic location.

Effects

You can associate events with animation effects. VRSG supports:

e Billboard-based effects for rotating 2D textures such as trees, or for a flame or detonation
effect.

e Particle-based effects for smoke plumes, tactical smoke, blowing sand, blowing dust, dust
trails, rotor wash, explosions, and so on. These effects provide a greater degree of realism
as they are volumetric and they interact with wind. VRSG is delivered with several solid
particle ballistic effects, which model projectiles with dust trails that are cast from
detonation events.

VRSG is delivered with 480 effects and configuration files to map the effects to DIS events.
These effects range from smoke in various colors, different types of contrails and wakes, to
explosions with a variety of characteristics, to a particle-based volumetric flame effect for
burning vehicles. You can configure animated effects for one-time animations or

for events with longer duration.

Chapter 1 Introduction 1-5

VRSG supports real-time dynamic flare effects, which, in addition to providing a convincing
animation of a flare, also dynamically illuminate nearby terrain and model geometry. The
animation sequence and scene illumination properties of each flare effect are user
configurable.

2D overlays

VRSG supports multiple mechanisms for adding 2D overlays to the 3D display. VRSG
includes built-in overlays for many popular Unmanned Aerial Systems (UAS)and targeting
pods. For CIGI integrators, VRSG supports a large portion of the Common Image Generator
Interface (CIGI) 4.0 symbology opcodes. More advanced integrations can develop overlays
using VRSG's Plugin API and the DirectX Graphics API. VRSG has an OpenGL
interoperability plugin which enables users to code their HUDs or other overlay graphics in
machine-native OpenGL.

Viewports

A viewport is a single scene rendered in a VRSG channel. A single VRSG channel can be
divided up into multiple viewports, or concurrent scenes, with each viewport assigned to a
different view of the scene. Multiple viewports can overlap as in a picture-in picture
arrangement or to be spatially disjoint as in picture-by-picture arrangement. Some simulation
applications require multiple VRSG viewports; for example, UAS simulations often need
dedicated viewports for both the nose camera as well as the articulated sensor camera. Many
VR HMD devices require at least two viewports (one for each eye) or four viewports (two for
each eye), depending on the manufacturer. Viewports can also service two or more projectors
on a large dome display. Viewport limits are associated with the license for a VRSG channel.
Multiple viewports are supported by applications using CIGI, not DIS-based interfaces.

Mission functions

VRSG supports basic mission functions requirements to meet needs ranging from ground-—
based vehicle simulators to fast moving fixed-wing aircraft. The VRSG environment shares
the responsibility of mission functions with the host simulator. Terrain elevation, point-to-
point intervisibility, collision detection, and intersection with dynamic models are all

1-6 MVRsimulation VRSG User’s Guide

supported through CIGI version 4.0. Supported CIGI mission functions include Height Above
Terrain (HAT), Height Of Terrain (HOT), line-of-sight vector requests, line-of-sight segment
requests, and collision segments.

A library that can be integrated into the simulation host provides point-to-point intervisibility,
terrain height lookup, and general coordinate conversion utilities to work with VRSG’s
round-earth coordinate system.

3D animated characters

VRSG can display hundreds of characters within the field of view while maintaining a high
frame rate. Delivered with VRSG is a substantial model library of characters and weapons in
MVRsimulation’s 3D runtime model format which you can immediately configure and use in
VRSG.

Real-time VRSG scene of a close air support team on MVRsimulation's geospecific terrain of Hajin, Syria.

In addition you can use your own custom characters, weapons, and animations. Like a vehicle
entity, a 3D character can be configured as an entity in VRSG through the ModelMap.ini
configuration file. You can assign any character model to a DIS lifeform entity using its DIS
enumeration.

VRSG also includes a wide range of character animations, which can be used in Scenario
Editor for creating pattern of life scenarios. The animations portray all commonly used
appearances required by the DIS protocol; VRSG automatically blends animation transitions
smoothly.

Chapter 1 Introduction 1-7

VRSG real-time screenshot of a character animation of a character smoking a cigarette. Notice the smoke
bloom in the IR sensor view.

You can animate a character’s individual fingers using 16-bone hand models. These hand
models with articulated fingers can be used with our character models to simulate the gestures
of non-verbal commands and communication, such as tactical combat hand signals. (The FBX
rig for these hand models is available upon request.) Supporting this feature are 30 BVH
animations for the skinned hand models, which were created using Autodesk Motion Builder
animation software.

VRSG real-time screenshot taken in an HTC-VIVE Pro headset of character finger-based signal animation.

The pilot character model is giving a hand signal for the Naval Air HEFOE code indicating the aircraft is
having trouble with the electrical system.

1-8 MVRsimulation VRSG User’s Guide

Physics-based or material-based infra-red rendering

VRSG’s physics-based IR uses a physics-based model licensed from TSC, in conjunction
with IR rendering technology developed by MVRsimulation, featuring real-time computation
of the IR sensor image directly from the visual database, without the need to store a sensor-
specific database. (Available upon ITAR approval for international customers.)

On a per-material basis, you can provide thermal radiance profile data as a function of time-
of-day. The fidelity of the radiance profile data is under user control. Notional data may be

supplied for installations requiring ITAR export compliance. You can also provide radiance
profile data that was derived from a third-party physics-based model.

MISB compliant 0601.9 KLV metadata. VRSG video and metadata has received full
compliance from the MISB CMITT test suite.

Eye tracking

To take advantage of the eye-tracking technology in Varjo XR headsets, VRSG can visualize
the gaze of a pilot (or ground personnel). During a simulated flight (or ground) training
mission, VRSG can track the pilot’s head position and orientation within the cockpit
simulator, track the gaze vector using the Varjo device’s pupil tracking functionality, and then
depict the gaze of each eye independently as a color-coded 3D cone. Head position is
depicted with a head model and pupil gaze direction is depicted with red and blue cones, as
shown below.

Chapter 1 Introduction 1-9

At the end of the training mission, VRSG can export this data via DIS as a PDU log. During
after-action playback, VRSG visualizes the pilot’s head position, orientation, and gaze vector
over the events of the training session. From a tactical perspective, the eye-tracking playback
can help identify missed moments of attention to instrumentation or the direction of an
important activity. And it could be useful for beyond visual range systems management
review or for critiquing basic fighter maneuvers. This setup can be used in any type of mixed-
reality application.

Standalone features

The following additional capabilities are available in VRSG, independent of a simulation host
model (using a 6DOF game controller for navigation as described next):

e Terrain paging algorithms to visualize e Synchronized multiple viewpoints for

expansive terrain limited only by users’ users to depict a contiguous virtual
system storage capacity. world across multiple display systems.

e Culling and continuous morphing levels ® Ability to render eye-tracking data
of detail (LOD) techniques. captured by Varjo headsets.

e Absolute terrain correlation with SAF e Dynamic shadows for all entities and
formats. cultural features.

e Teleportation to arbitrary locations. e An extensive set of attachment modes.

e Real-time selection of sensor modes. * Ability to save and recall viewpoints.

e Robust libraries of texture-mapped 3D~ ® Editable 3D sounds associated with
entities and cultural feature models. virtual world events and vehicle types.

e Ability to save session configuration * Ability to capture still images of the
settings for use in subsequent sessions. VRSG scene.

e Choice of coordinate systems and e Support for UDP multicast, broadcast,
database projections. or point-to-point communication.

e Support for 6DOF game devices that * Support for VR and mix@d real.ity
comply with the Human Interface headsets that are compatible with
Device (HID) standard. OpenVR / SteamVR.

e Support for multiple monitors and * Tools f(?r converting FBX mgdels and
EDID emulators on headless systems. OpenFlight models and terrain to -

MVRsimulation’s model and terrain
formats.

Navigation

You navigate through the virtual world by using a 6DOF game controller such as Logitech
3Dconnexion’s SpaceMouse Pro or SpaceMouse Compact device and the VRSG user
interface. For fixed wing and UAV modes and for manipulating a character in First Person
Simulator (FPS) mode, VRSG supports the Logitech F310 gamepad or an 8-button 4-axis
joystick-type device that is compliant with the USB Human Interface Device (HID)
specification.

1-10 MVRsimulation VRSG User’s Guide

These devices are supported by Windows and VRSG without the need to install any
additional software.

Network capabilities

Using the DIS protocol VRSG can visualize up to several thousand entities simultaneously on
a high-fidelity terrain database.

VRSG in one of the F-16C Block 30 simulators at Kelly Field (KSKF) at Lackland
Air Force Base. (Photo courtesy of the U.S. Air Force.)

VRSG has no explicit limit on how many entities it can handle in a scene while maintaining
real-time performance. Some of MVRsimulation’s customers run exercises with upwards of
100,000 entities while maintaining real-time performance. The only limitations might be
performance considerations such as the bandwidth of the communications channel, model

complexity, database complexity, viewing range, and how near the entities are in your field of
view.

VRSG is fully interoperable with semi-automated forces (SAF) applications and other DIS-
compliant applications.

Interaction with SAF applications

As a DIS-based simulation application, VRSG is compatible with SAF applications such as
OneSAF, JointSAF, XCITE, and commercial systems such as Battlespace Simulations’
(BSI’s) Modern Air Combat Environment (MACE®). Systems such as MACE and XCITE,
which can utilize MVRsimulation’s round-earth VRSG terrain tiles for their elevation data
source, can use fully-correlated databases without the need for ground-clamping. Databases
derived from third-party products, such as Presagis Terra Vista, can also achieve full
correlation provided the VRSG terrain tiles were produced from the OpenFlight output of the
same Terra Vista project that rendered the SAF representation of the database. As a last

Chapter 1 Introduction 1-11

resort, VRSG offers a ground-clamping feature for cases where perfect correlation between
VRSG and the SAF databases are not possible.

Aerial view of a portion of MVRsimulation's Afghanistan Correlated aerial view of the same area rendered in BSI MACE'’s
database rendered in BSI MACE, with VRSG providing the 3D 2D view. Images courtesy of BSL
view.

MVRsimulation round-earth 3D terrain database format

MVRsimulation’s VRSG (MDS) terrain format is a round-earth terrain representation. This
format is ideal for aerial applications, which require vast areas of terrain to use with VRSG.
MVRsimulation Terrain Tools is currently used to build terrain for many manned and
unmanned aircraft simulators. A round-earth terrain format has many benefits; most
importantly, the terrain models the earth to a high degree of accuracy over its entire surface in
contrast to a local approximation that is only valid over a relatively small range. This level of
accuracy is vital for targeting applications and determining intervisibility. MVRsimulation
initially designed this terrain format for aviation applications that require expansive — and
possibly full world — coverage, a round-earth terrain model, and incremental database
building.

The VRSG round-earth virtual terrain architecture represents the earth’s surface in a
geocentric coordinate system which accurately represents the curvature of the earth and
handles ordinate axis convergence at the poles. This architecture solves a variety of problems
associated with projection-based, monolithic visual databases, leading to improvements in
database production, distribution, storage, and update, as well as in many run-time and
mission function benefits.

A key component of the VRSG terrain format is the use of an atomic geometric primitive as
the database tile: the triangle. The geographic coverage of the entire database is compiled as a
mosaic of tiles. Database tiles typically represent a unit of database compiler output, a load
module or unit of paging by the runtime system, and/or a unit of culling by the runtime
system. Each tile is represented on disk by a single file. You can store tiles on multiple drives
and directories.

Because the terrain is comprised of a collection of triangular tiles, you can visualize any set of
tiles that you want to traverse; you can place a subset of generated tiles in a different directory
from a larger set, and point VRSG to the location of only the subset.

1-12 MVRsimulation VRSG User’s Guide

y
/4
Y & (g
- y NSl
£ Q (VAL

Real-time VRSG screen capture from within the cockpit of an A-10 entity in flight over virtual Hajin, Syﬁa.

You can use MVRsimulation’s Terrain Tools to generate 3D terrain in VRSG (MDS) format
from within your GIS software. You simply create a basic map in ArcGIS Pro and use Terrain
Tools to generate 3D terrain in the round-earth VRSG format. The resulting terrain can be
rendered in real time within VRSG. For complete information about generating VRSG-
formatted terrain, see the MVRsimulation Terrain Tools User’s Guide.

The VRSG software installation provides an MV Rsimulation utility that converts OpenFlight-
formatted databases to the VRSG terrain format. See the chapter “Converting FBX and
OpenFlight Formats to MVRsimulation Runtime Formats™ for information about using this
utility.

Available from MVRsimulation in VRSG round-earth terrain format are datasets of
Continental USA and AK and HI (CONUS++), the rest of North America, Africa, Asia,
Australia and Oceania, Europe, and South America 3D terrain, with several high-resolution
areas.

Scenario creation

Scenario Editor enables you to create and edit real-time 3D scenarios to play back in VRSG.
Within its game-level editor type interface you can add culture and moving models directly to
your 3D terrain and build dense 3D scenes with pattern-of-life scenarios.

Experienced VRSG users and novices alike can work in a flexible manner with the tools and
content libraries to increase the realism of terrain easily with rich culture and scripted
movements of vehicles and characters. The 3D terrain that you work with in Scenario Editor
is the same 3D terrain you visualize in VRSG, and the scenarios you create can be run in both
Scenario Editor and VRSG. Like VRSG, Scenario Editor requires the 64-bit Windows 10
operating system and supports terrain in VRSG round-earth terrain format.

Chapter 1 Introduction 1-13

Refining culture placement in Scenario Editor. Scripting vehicle waypoints in Scenario Editor.

MVRsimulation 3D model libraries

VRSG is delivered with substantial libraries of 3D content. All models in the libraries are in
MVRsimulation’s HPY model format, which is described in the chapter, “MVRsimulation 3D
Model Format.” You can use these models to populate your virtual worlds with cultural
features and to interact with networked character and vehicle entities in real time to carry out
scenarios. Periodically MVRsimulation adds more models to the libraries; and makes them
available to current customers on maintenance at no additional charge. Updates to the model
libraries index can be found on the MVRsimulation website at: www.mvrsimulation.com.

Note that HPY models can be used in exactly the same manner as HPX format models from
earlier VRSG releases. VRSG and MVRsimulation’s Terrain Tools continue to fully support
the HPX model format. MVRsimulation’s FBX and OpenFlight conversion utilities, which
are installed with VRSG, convert models to HPX format.

The model libraries for buildings, commercial and military vehicles, characters, and so on are
installed in subdirectories within the \MVRsimulation\VRSG\Models directory. Although the
3D Content section of MVRsimulation’s website is ideal for previewing our model libraries,
without Internet access you can preview the models by viewing the directories in Windows
Explorer in Icon mode.

1-14 MVRsimulation VRSG User’s Guide

« v 4 1 > KDESKTOP > Local Disk(C) > MVRsimulation > VRSG > Models > Military v O | Search »
~
3 Quick access { .
Desktop ¢ = g :
a ’ S Ly X :
i iz Ay Yy
3 Downloads ” 0 - 0 4 0 @ -
@ Creative Cloud Files 7000-MV.USgree 11661K-Dagesta A-6EUSgreyhpy A-10AUSgreyhp A-10CUScamoh A-10CUSgreyhp A-20BBRcamoh A-29B.CO.greyhp
) nhpy n.RU.greyhpy ¥ Py ¥ py ¥
&* Dropbox
.dropbox.cache ~
¥ o /
Photos % »
s - A
&2 Public k > e i 3 =
& OneDrive A-29BUSgreyhp A-42R-1USgrey. A-SOELIN.greyhp A-SOURUwhiteh A-160TUSwhite. A-190-O1RUgrey A-190ERUgreyh A400MDEgreyh
y oy ¥ oy hpy noy oy Py
= KDESKTOP
3 3D Objects J- J j ~ /-
m Desktop " 2 > W o / / /
o @ @ @ @ @ @
% Downloads AODMESgreyh A400MFRgreyh AAOOMGBgreyh AAOOMTRgreyh AA-2RUgreyhpy AA-G6RUgreyhpy AA-BRUgreyhpy AA-9RUgreyhpy
& Music oy Py Ry Py
& Pictures {
B Videos = o o
& Local Disk (C) = = .
< Terrain (D) @ : < [*] @
AA-10RUgreyhp AA-11RUgreyhp AA-12RUgreyhp AAM-N-10USgr AAVC-TA1USca AAVC-TA1USgre AAVP-TA1USca AAVP-TA1USgre
- DATA E) y y eyhoy mahpy enhpy mohpy enhpy
¥ Network

&
¥
ki
&
&

©

y
AAVR-TAIUSca AAVR-7AIUSgre AC-130HUSgrey. AC-130UUSgrey. AC-130WUSgrey AC-FIFRcamoh AC-F1FRdeserth AC-FIFRgreenh
mo.hpy enhpy hpy hpy hpy Py Py Py

/.7 49

ACMLUS.greyhpy ADM-160CUS.gr Aerosonde-Mark AFT-10.CN.camo. AFT-10.CN.desert AFT-10.CNgreen. AGM-65.US.grey. AGM-65AUSwhi
eyhpy -4-7.Us.grey.hpy hpy hpy hpy hey te.hpy v

N
&
o\
AN

Previewing MVRsimulation VRSG content in Windows Explorer in Icon mode.

Many models were constructed with modeling tools and then textured with photo textures that
were modified in an image editor such as Adobe Photoshop. Other models were converted to
MVRsimulation’s format from other standard 3D model formats.

Most of the military entity models include articulated parts, damage states, and advanced
animations such as wheels or tank tracks that move at a rate corresponding to the vehicle
velocity. Most are also ready to support real-time, physics-based thermal sensor viewing
within VRSG. Many models have normal-map textures. Some models also have variants. A
variant is a model that is derived from a basic model but differs in some way, such as an
aircraft model that carries a missile or micro-UAYV, as in the case of an AH-64 and its
variants.

If you need an entity that is not available in VRSG’s current model libraries, you can order
commercially available 3D models in OpenFlight format and convert them to
MVRsimulation’s runtime model format. If you need to edit an MVRsimulation model, you
can obtain a site license for the model’s source data from MVRsimulation. For more
information, contact support@mvrsimulation.com.

Model conversion utilities

With VRSG, MVRsimulation provides utilities for converting FBX and OpenFlight-
formatted models to MVRsimulation’s model format. These conversion utilities, described in
the chapter “Converting FBX and OpenFlight Formats to MVRsimulation Runtime Formats,”
enable you to reuse your existing FBX and OpenFlight entities and static models in VRSG.

Chapter 1 Introduction 1-15

VRSG real-time close-up scene of the lush forest and one of the many bridges and twin tunnels along the
A6 highway of geospecific virtual Lugo, Spain. The bridge and twin tunnel models were built in a modeling
tool, exported in FBX format, and then converted to MVRsimulation’s model format.

MVRsimulation and several customers have adopted a workflow to populate 3D terrain with
hundreds or thousands of geotypical 3D urban building models, initially generated in
ArcGIS® CityEngine®.

s

VRSG real-time scene of geospecc 3D terrain of Tripoli, Libya. The terrain features 12,456 geotypical
building models generated in CityEngine, exported in FBX format, and converted to MVRsimulation's model
format.

The models are extruded and textured from CGA (Computer Generated Architecture) rule
files that define how the actual building geometry is created and textured using attributes in
the OSM data, and exported as a large culture model in the popular FBX file format. Such
models can be converted to MVRsimulation’s model format with the FBX conversion utility
and then rendered in VRSG. A similar workflow exists for FLT formatted models.

1-16 MVRsimulation VRSG User’s Guide

What’s new in version 7

The January 2025 release of VRSG version 7 contains the following new features,
enhancements, and 3D content:

Ability to control model articulation by encoding animations in a model’s JSON metadata
file that coordinates movement of multiple articulated parts.

Improved atmospheric model featuring improved light, haze, and cloud interactions. The
underlying atmospheric model consists of 16 distinct layers each with unique visibility
ranges and wavelength-dependent absorption and scattering properties.

Ability to teleport to a location specified by a Google Maps URL.

The H264 plugin has two new options: an option to select CAF DMO Transmitter PDU
compliance level, and an option for "leap second" offset in generated timestamps in the
KLYV stream. The H264 plugin will now return the encoded KLV metadata via the plugin
API, enabling a subsequent executing plugin the ability to access the encoded KLV
bitstream.

VRSG's CIGI support has three new component controls:
CIGI_SymbolSurfaceEntityAttached which allows a symbol surface to be attached to a
DIS entity, CIGI ComponentldDepthOfField to control the depth-of-field sensor effect
feature, and CIGI_ComponentldOwnshipForViewport to allow each viewport to have a
unique ownship entity.

MVRsimulation’s 3D model library has surpassed 10,000 models. All models are
included in the VRSG installer. You can also download new and updated models from
downloads.mvrsimulation.com.

MVRsimulation's video player has a new plugin API that allows a user-developed DLL
to process decoded KLV metadata and draw graphics over the decoded video frames. The
video player also has a new command-line option to change where settings are saved in
the registry. This enables multiple shortcuts to remember different saved settings.
Ability to control the degree of recoil effect for a gun model in response to a FirePDU via
a JSON variable.

Ability to specify textures to replace with VRSG 2D water during OpenFlight
conversion.

Ability to assign a wind-sensitivity metric to a texture used in a vegetation model to
control how much the model will respond to wind direction and velocity.

Ability to control the diameter of the real-world pass-through of the Enable Skirt option
on the Dashboard’s Varjo tab. Enable Skirt renders a circular pass-through directly below
the viewpoint of the headset, enabling the wearer to look down and always see the real-
world for spatial awareness.

Binocular Zoom Mode added to the Varjo viewpoint. The trainee can control three levels
of magnification including a simulated M22 reticle.

Ability for a role player in VRSG, wearing a head-mounted display (HMD), to be
attached to a dynamic 3D model. The viewpoint follows an animation and aligns to the
assigned position within the 3D model.

An updated EME plugin for the SOFLAM, which enables users to dynamically change
the FOV to match what they see in the real world.

Integration with the Special Warfare Assault Kit (SWAK) supporting DACAS. VRSG
provides the simulated ROVER feed with KLV metadata that correlates and embeds the
video stream into the SWAK terrain imagery.

Simulated NVG improvements for enhancing realism.

Chapter 1 Introduction 1-17

Scalable plugin support for changes in calibration files produced by Scalable version 8.
e Legacy water surface can now optionally be positioned at the nominal regional geoid
height instead of at the WGS84 ellipsoid height.
o Ability to use JSON model metadata to remap a model’s articulated part codes.
Improvements to CIGI symbol rendering: multi-line text now supported and improved
mitering of line edges.
Add support for covert light lobes, visible only in NVG mode.
New orthographic rendering mode for visualizing models in ModelViewer.
ModelViewer now supports SGI RGB image capture format.
CIGI screen capture requests can now request image sizes larger than the framebuffer.
Support for terrain microtextures using normal maps.
Instanced models may now support normal mapping textures.
New CIGI component control that allows the user to select the sun elevation angle where
light lobes are triggered to the on state.

s

VRSG real-time scene featuring a Khordad 15 model, one of the many new models available in VRSG 7.
New 3D terrain datasets built since the previous VRSG release include:

e Holloman Air Force Base (KHMN), New Mexico and Mayport Naval Station, Florida
terrains include modeled runways complete with lighting, navigational signs, taxiways,
windsocks, and tarmacs with geotypical hangars and control tower.

e [shigaki and Miyako Islands, Okinawa Prefecture, Japan with over 70 geospecific
building models. The database includes hundreds of detail models of boats, containers,
vegetation, and poles.

e Washington, DC Metro Area with a total of 133,644 Cyber City 3D buildings along with
geospecific artist rendered models of the Capitol Building, White House and Lincoln
Memorial.

e Tampa Bay, Downtown Tampa Bay with 3D models of the city.

e MVRsimulation’s CONUS terrain has been entirely rebuilt using National Agriculture
Imagery Program (NAIP) source imagery from 2014-2018. (Does not include Alaska and
Hawaii.)

1-18 MVRsimulation VRSG User’s Guide

Latvia, with 25 cm per-pixel imagery resolution and five cultural areas of interest (AOlIs):
Keguma, Riga, Segulda, Senite, and Zilupe.

Tripoli, Libya, built using 60 cm resolution imagery and 12,456 building models
generated in CityEngine.

Port city of Aden, Yemen, built with a 50cm orthoimagery mosaic, several thousand
geotypical CityEngine building models, 2D model of the runway at Aden International
Airport, and bridges connecting mainland Aden to Little Aden,

Okinawa, Mount Fuji, and Tokyo, Japan, with 30-60cm imagery.

A region in Abu Dhabi, UAE, that includes Dalma Island, Sir Baniyas Island, Higher
Yasat, Lower Yasat, Al Ruways Industrial City, Al Dhannah City, Al Hamra, Shuweihat
Island, and Barakah.

Previous release

New features in the Varjo HMD plugin (controlled in the Dashboard’s Varjo tab) include
using Varjo eye-tracking capabilities for visualizing in VRSG, for real-time monitoring
(on a separate VRSG channel in stealth mode) and in training mission playback for after
action review. Such features include Enable Gaze Tracking which turns on tracking and
pupil calibration, and Eye-Track Action Review, which inserts the headset wearer’s head
position and pupil gaze data into the DIS stream. Other features include foveated
rendering options for Varjo headset and the ability to render the VRSG scene in an
external display in addition to within the Varjo headset.

The Eye Track Visualization option on the More Graphics Options dialog box turns on
the rendering of the eye-tracking data (head position and pupil gaze) from a Varjo
headset that has been captured in the DIS stream in a recorded VRSG session, as
described above. Head position is depicted with a head model and pupil gaze direction is
depicted with red and blue cones.

New features in sensor simulation include:

- Built-in sensor fusion, enabling you to select two new possible sensor mode options:
Visual Electro-Optic fused with IR White Hot and Visual Electro-Optic fused with IR
Black Hot. You can control the fusion blend ratio by CIGI component controls or the
slider on the Sensor tab of the VRSG Dashboard.

- Use of a JSON file for creating a radiance profile of materials for sensor simulation.
This means you can now generate your own radiance profile either from scratch or with
IRSetup from notional data or another sensor model, and edit the file in Notepad. The
IRSetup (under ITAR control) now produces an editable .json file.

A new name convention for cultural feature files, viewpoint files, PDUlogs, sensor
profiles, and microtextures: vrsg.clt, vrsg.viewpoint, vrsg.pdulog, vrsg,irm, vrsg.json, and
vrsg_microtexture Xy z.tex. Previously created files with the older convention of
"metadesic" in the filename are respected by VRSG 7.

Ability to improve the appearance of dynamic cast shadows when viewing the scene
through a narrow field-of-view (FOV), such as those typically used for UAV sensors. A
narrow FOV induces high magnification and greater standoff distances, which can cause
shadows to become washed out or to disappear entirely. Use the Shadow Quality
checkbox on the Shadows tab to direct VRSG to render dynamic shadows at a higher
resolution, for FOV angles below a given threshold. (You can find the FOV in use on the
Dashboard's Graphics tab.)

Chapter 1 Introduction 1-19

e New support for multiple sizes of pageable textures: 512 x 512, 1024 x 1024, and 2048 x
2048 in 3D terrain built with newly released Terrain Tools v2.0. Terrain databases
converted from OpenFlight source also benefit from multiple sizes of pageable textures
with MVRsimulation's updated OpenFlight to VRSG terrain format conversion utility.

o The Remote Regeneration options Generator/Receiver on the Attach Offsets dialog box
tab configure a given VRSG machine in UAV mode to transmit telemetry via DIS
packets to a remote VRSG client machine.

e Ability to attach a light lobe to a dynamic moving model via a JSON file.

e The 2D sensor overlay AN/DAS-1 has been updated to AN/DAS-4.

e New CIGI component control, CIGI_ComponentldRotorWashParams, controls particle
dispersion of a rotor wash effect: AGL height at which the effect begins, particle speed,
and particle speed variance.

e A new SetPDU interface ATTRV_LOAD_MODEL MAP to supply the directory of a
specific ModelMap.ini to load.

e New CurvedDisplay plugin provides horizontal distortion correction for curved monitors.

e New PixelShift plugin supports projectors that require a pixel shift for emulated 4K
resolution.

e VRSG has been recompiled in VS 2019. User-developed plugins built with VS 2015 and
2017 are compatible with VRSG v7.0.

Software maintenance updates

A purchase of a new VRSG license is delivered with software maintenance for one full year.
Maintenance includes technical support and VRSG software upgrades within the one-year
period. New and updated models and terrain are available to customers on active software
maintenance. If you are a current VRSG customer, you can purchase a year of software
maintenance directly from the order form on the MVRsimulation website, where complete
pricing and order information is available.

Other MVRsimulation products

In addition to VRSG, MVRsimulation delivers the following products that provide simulation
hardware and tools to generate and render 3D geospecific virtual worlds. For more
information about other MVRsimulation products, visit www.mvrsimulation.com.

Deployable Joint Fires Trainer

MVRsimulation’s deployable joint fires training solution, the Deployable Joint Fires Trainer
(DJFT) provides a quick deploy capability for JTACs and forward observers to train
alongside fixed- and rotary-wing aircrew within a fully immersive, joint training
environment.

1-20

MVRsimulation VRSG User’s Guide

At the DJFT Observer station with the Varjo XR-3
mixed-reality headset and emulated SOFLAM. Player, Instructor, and Observer stations.

The DJFT with VRSG and BSI MACE includes he Role

The modular plug-and-play system, designed by a former JTAC is comprised of three or more
stations fully contained within two-person portable ruggedized cases. The DJFT contains all
the hardware required to run dynamic, full-spectrum JTAC/joint fires training scenarios,
including tactile IZLID and LTD, simulated GPS receiver, mixed-reality HMD system, and
communication systems. Scenarios are run on VRSG and BSI’s MACE.

The DJFT is fully accredited by the US Joint Fire Support Executive Steering Committee
(JES ESC) for Type, 1, 2, and 3 Terminal Attack Control (TAC), Bomb on Coordinate
(BOC), Fixed-Wing (FW), Rotary-Wing (RW), Remote Observer (RO), Video Down-Link
(VDL), Suppression of Enemy Air Defenses (SEAD), Urban, Forward Air Controller
(Airborne) (FAC (A)), Night, IR, and Laser controls.

Portable Joint Fires Trainer

The Portable Joint Fires Trainer (PJFT) brings mixed-reality Joint Fires simulation training to
the tactical edge. Users train at the point of need using real-world Android Team Awareness
Kit (ATAK) end user devices, MVRsimulation’s Virtual Reality Scene Generator (VRSG),
Battlespace Simulations' MACE, and the Varjo mixed-reality headset.

A complete system consists of two portable training stations: one Instructor Operator Station
(IOS) and one JTAC Backpack (OBS), each fully contained in a commercial airline carry-on
backpack. Systems can be configured with multiple I0S or JTAC backpacks to match specific
training goals. Additional stations can be added to expand the training capabilities such as
tacitle EMEs, Role Player, Sand Table, and FPV UAYV Drone stations.

Two backpack version of the ulm—pormble PJFT. JTAC student and instructor using the PJFT.

The PJFT provides full-spectrum mission training as a stand-alone capability or as a portable
component of the fully-accredited Deployable Joint Fires Trainer (DJFT) or similar JES ESC
accredited simulators. The PJFT is directly interoperable with the current U.S. Air Force

Chapter 1 Introduction 1-21

JTAC training program of record system, the Joint Terminal Control Training and Rehearsal
System (JTC TRS).

First Person View UAV Drone Simulator

The First Person View (FPV) UAV Simulator provides a highly-realistic training solution for
the operation of racing-style quadcopter attack drones on the contested battlefield or
reconnaissance drones with controllable camera. The internally developed simulator
combines VRSG with a high-fidelity flight model from Bihrle Applied Research, to replicate
the tactile, visual and cognitive demands of operating agile UAVs in combat to successfully
defeat enemy targets.

The FPV UAYV can be used as an ultra-low footprint stand-alone training device for tactical
operations or networked with other in-use air and ground simulators that operate on the
VSRG infrastructure, enabling Large Scale Combat Operations (LSCO) training. The FPV
UAV can integrate with GOTS and commercial semi-automated forces (SAF) software to see
all entities in the simulated environment.

The FPV UAV drone simulator being used with FPV video goggles.

VRSG streams full motion video (FMV) including KLV metadata to stimulate tactical
communication systems. The high-fidelity model is hosted in Bihrle's DSix simulation
environment. The simulation employs a modular physics-based blade-element framework that
has been used for full-scale rotorcraft training applications in Full Flight Simulators (FFS)
and Flight Training Devices (FTD).

Fixed-Wing Part Task Mission Trainer

MVRsimulation’s new portable fixed-wing Part Task Mission Trainer (PTMT), designed and
built under an internal development program, provides a low-cost, quick-deploy cockpit
training solution to fill the gap in current in-use mission tactics training toolkits for military
fixed-wing pilots. The system aims to maximize suspension of disbelief for trainee pilots as
they practice mission tactics and coordination as part of joint training operations in networked
environments. It can also operate as a standalone training solution.

1-22 MVRsimulation VRSG User’s Guide

Flying in the PTMT, with VRSG rendering the out-the- ~ The PTMT with VRSG's OTW view on the curved display
window (OTW) view in the Varjo XR-3 mixed reality and simulated sensor view on the cockpit control panel.
headset and on the curved display.

Made in the USA with a welded aluminum enclosure, the PTMT uses operational
representative aircraft hardware to conduct air-to-air or air-to-ground training scenarios. The
system can be configured for training for 3rd and 4th generation combat aircraft currently
used by NATO nations by easily changing the position of the specially-designed, patented,
flight control stick between side-stick and center-stick positions.

Scenarios are run on VRSG and BSI’s MACE. VRSG provides the real-time 3D out-the-
window and sensor views. BSI’s full suite of tools enables a multi-mission virtual role
playing in the air-to-air arena, to include tactical displays that are integrated with HOTAS
controls and emulate real world tactical systems. This coupling of MACE with VRSG
provides the degree of immersion ideally suited to training from solo part-task mission
objectives to large-scale, distributed live-virtual-constructive (LVC) rehearsal of major
combat operations.

Terrain Tools extension to ArcGIS Pro

MVRsimulation Terrain Tools enables you to turn geospatial data into real-time 3D terrain
from within your GIS software. Building on the industry standard ArcGIS® Pro platform, the
Terrain Tools extension combines powerful 3D terrain creation with an accessible interface
that can be easily understood by anyone with a comprehension of geospatial data concepts
and experience with ArcGIS Pro.

Create real-time terrain in round-earth VRSG terrain architecture for rendering in VRSG with
these key features that integrate seamlessly with ArcGIS Pro:

e Live compositing display of raster imagery and elevation data in a WYSIWYG interface.

e Support for any format of source data supported by ArcGIS Pro.

e Ability to supply vector data to define linear and areal features. Generate road networks,
fine tune elevation with polygon or point data, create extruded buildings, walls and
fences, create large coverage areas of cultural lights, or specify cut-in areas with blended
geotypical ground textures.

e Raster display capabilities: pansharpening, custom band order, multiple resampling
techniques, histogram stretching, contrast and brightness control, masking, and edge
lending.

Chapter 1 Introduction 1-23

e Support for building underwater geometry (bathymetry) to increase the terrain fidelity of
the ocean floor for use in littoral scenarios with VRSG’s 3D ocean sea states.

e Ability to compile buildings and fences from 2D polygon footprint features using an
ArcGIS Pro® CityEngine® rule package (.rpk): optimized with geometry LODs,
instancing, and spatial clustering.

e Ability to compile 3D and 2D external terrain geometry (such as inset models and
runways) directly into the terrain for a seamless integration between the terrain and cut-in
model geometry.

e Distributed build system with a browser user interface.

High-resolution sub-inch per-pixel terrain imagery

MVRsimulation's small UAS (SUAS) collects high-resolution still-frame images at sub-inch
(2 cm) per-pixel resolution, which after orthorectification, can be used as source imagery to
compile 3D terrain with MVRsimulation's Terrain Tools. The resulting geospecific terrain
can then be rendered in VRSG.

e v,

>, 2 e N . < S0 ot
Real-time VRSG rendering of 2 cm terrain built with imagery collected by MVRsimulation’s SUAS of the
Naval Air Station Fallon Range Training Complex. On the left: visual view, on the right: the sensor view.

Aerial imagery collected by the SUAS can be ordered directly from MVRsimulation by
specifying the area of interest, such as an airfield or a training site. An order of aerial imagery
consists of the following deliverables:

e Raw collected photographic imagery data at sub-inch resolution.

Orthorectified GEOTIFF imagery (processed by MVRsimulation) to be used with your
Terrain Tools software license.

e Dataset of terrain tiles in VRSG (round-earth) terrain format at 2 cm resolution to be used
with your VRSG software license.

e Aecrial imagery orders must be for an area of a minimum of 20 sq km. Access to the area
of interest for aerial photography must be in accordance with FAA regulations.
Customers are responsible for obtaining the necessary authorization and certified access
to operate within the particular area of interest for aerial photography. Customers have
unlimited unrestricted use rights to the imagery. MVRsimulation retains the right to use
the collected data and resulting terrain tiles and to redistribute the terrain (typically as
part of a larger set of terrain tiles of a region).

Examples of terrain built from sub-inch resolution imagery can be seen in VRSG-recorded
flyover videos, created with the H.264 plugin, which are located on MVRsimulation’s
website.

1-24 MVRsimulation VRSG User’s Guide

Complete systems

MVRsimulation can deliver its software on state-of-the-art personal computers. A complete
VRSG system with MVRsimulation software and terrain databases preinstalled, includes a
Windows PC with the latest in high-end PC gaming components. These complete systems can
be built as a desktop system, notebook computer, or rackmount multi-computer system.

MVRsimulation provides Terrain Network Attached Storage (NAS) systems and Terrain
Servers for storing the entire collection of MVRsimulation’s 3D terrain. A specific terrain
database generation system is available for use with ArcGIS Pro, Terrain Tools and VRSG.

Information about these products can be found on MVRsimulation’s website at
www.mvrsimulation.com.

About MVRsimulation

MVRsimulation Inc., founded in 1997, is dedicated to providing image generator software
that runs on commercial off-the-shelf personal computers. MVRsimulation software is
designed around the Microsoft family of products to maximize both the affordability and
accessibility of high-speed virtual world creation and visualization software. Since the
company’s inception, MVRsimulation’s visualization software has used the Direct X standard
to leverage the rapid advancement of 3D graphics of game technology.

MVRsimulation’s goal is to provide affordable simulation solutions to users who need
compact, portable, virtual reality software to produce imagery at high throughput rates on
state-of-the art personal computers.

For more information about the company and its products, visit the MVRsimulation website
at www.mvrsimulation.com.

If you have specific questions about installing or using the VRSG system, or about installing
or using an MVRsimulation product, you can contact MVRsimulation support services at:

Email: support@mvrsimulation.com
Phone: 617-739-2667
Fax: 617-249-0151

If you need technical assistance...

MVRsimulation is committed to providing you with a high quality product experience. If you
encounter a problem with this product, first try to determine whether the problem stems from
an underlying problem with your system:

e Make sure that your machine meets the system requirements listed on the
MVRsimulation website at
www.mvrsimulation.com/products/vrsg/vrsgsystemrequirements.html.

e Run 3D benchmarking tests to identify any subsystem problems as described in the
MYVRsimulation Product Installation Guide.

Completing these steps might solve the problem and eliminate the need for further assistance.

If you need further assistance, contact MVRsimulation via email at
support@mvrsimulation.com with details about the sequence of actions that led to the

Chapter 1 Introduction 1-25

problem and any resulting error messages. Attach any screenshots that help to illustrate the
problem. In addition, supply the following information:

e The product version number.
e The operating system and version number.

e Any special hardware or software configuration that might affect the problem.
e The contents of the VrsgError.txt error log file.

Most email to MVRsimulation support services is answered within 24 hours, Monday-Friday
9:00 am to 5:00 pm US Eastern Time.

Returning a damaged dongle

If you have a damaged VRSG dongle, MVRsimulation will replace it upon request, as
described in the Return Merchandise Authorization (RMA) instructions on the website at:
www.mvrsimulation.com/howtobuy/returns.html.

To return a damaged dongle for replacement:

1. Notice the dongle ID number located on the sticker that is affixed to the dongle. This
dongle ID number contains information about what the dongle is licensed for (product
and product maintenance). You must supply this dongle ID number in any
communication you have with MVRsimulation regarding your damaged dongle.

2. Email rma@mvrsimulation.com with a request to obtain an RMA number for the return
of your damaged dongle.

3. Send to MVRsimulation the damaged dongle or, at a minimum, the metallic unit (which
houses the electronic circuit board and memory chips) along with the RMA number.
MVRsimulation will not replace a dongle for which you only return the purple plastic
holder without the corresponding metallic unit.

For more information about MVRsimulation and its products, visit the MVRsimulation
website at: www.mvrsimulation.com.

About this manual
This manual describes how to use and customize VRSG.

All terrain database scene images within this manual are real-time screen captures taken by
MVRsimulation's VRSG except where noted, and are unedited except to format for inclusion
in this manual.

MVRsimulation values any feedback you have on this manual. Email any comments or
suggestions to: support@mvrsimulation.com.

1-26 MVRsimulation VRSG User’s Guide

CHAPTER 2

Exploring the VRSG System

MVRsimulation offers two ways to get you started with VRSG:

Run the demo scenarios that are delivered with VRSG. During installation, one or more
real-time recorded VRSG demo scenarios are copied to the VRSG installation directory
on your computer. For more information, see the section, “Playing VRSG scenarios” later
in this chapter.

Run VRSG with one of the 3D terrain datasets that are installed with VRSG in
\MVRsimulation\VRSG\Terrain. You can use these terrains to try out all the options
described in this chapter.

Before you operate VRSG, make sure that:

The System Properties dialog box for the Windows Device Manager shows that all
installed components are functioning properly. Any device that is not installed properly
will be shown in the list of devices marked with a yellow exclamation point. You must
resolve all problems with devices marked in this manner before you operate VRSG.

A VRSG license is active on the machine on which you intend to run VRSG. VRSG
requires the presence of a hardware dongle plugged into a USB port or software
activation on the intended machine.

Your user account does not need to have administrator or power user privileges. The only
user account requirement for running VRSG is permission to write to the VRSG
installation directory, that is, the \MVRsimulation\VRSG directory.

(Optional) A 6DOF navigation device is plugged into the computer on which VRSG will
be running, if user control of VRSG is required on the machine.

Note: If User Access Control (UAC) is activated on the system that is running VRSG AND
the \MVRsimulation\VRSG directory is located under C:\Program Files, then any changes to
VRSG files will not be saved or updated in the VRSG installation directory. Instead the
updated file will appear in the directory:
C:\Users\<username>\AppData\Local\VirtualStore\Program Files\M VRsimulation\VRSG.

2-2 MVRsimulation VRSG User’s Guide

Starting VRSG

User documentation
for all MVRsimulation
products.

VRSG program
executable.

Demo VRSG scenarios
you can play to see
VRSG capabilities.
Created in (and editable
in) Scenario Editor.

To start VRSG, choose the VRSG7 executable from the MVRsimulation VRSG7 program
folder on the Windows Start menu. The Start menu contains shortcuts to VRSG, VRSG
Scenario Editor, VRSG demos, and documentation, as shown in the following example:

All apps

B wvrsimulation Documentation

MvRsimulation Preduct installation Guide

Scenario Editor User's Guide

Model Viewer for inspecting
MYVRsimulation’s 3D models,
textures, effects, and terrain
tiles.

Terrain Tools User's Guide
VRSG User's Guide

MyvRsimulation VRSG

Model Viewer
Scenario Editor program
executable.

Scenario Editor
VRSG

MvRsimulation VRSG Dermos
Afghan Attack Damage Scenario

Afghan Close Alr Support Scenario

Afghan Insurgent Intel Scenario

Alternatively, you can start VRSG by double-clicking the VRSG 7 executable directly in the
\MVRsimulation\VRSG\Bin directory.

You can also start VRSG from the command line. For example:

Run C:\MVRsimulation\VRSG\Bin\Vrsg7.exe

Information about how to automate starting VRSG is presented later in this chapter, in the
section, “Running VRSG from the command line.”

About enabling certain VRSG options

The status of a VRSG license, its maintenance plan renewal, and access to certain options are
all managed by the authentication software associated with the product’s license. You update
the VRSG license by using an unlock code obtained from MVRsimulation. Some VRSG
options or MVRsimulation 3D terrain are not enabled in the core product, but instead require
an MVRsimulation-supplied unlock code to gain access to them. For example, the physics-
based IR feature requires an unlock code to activate it.

To use VRSG’s physics-based IR, you must first enter an MVRsimulation-supplied unlock
code to enable this option for your VRSG license. (International customers must obtain ITAR
approval for this feature.) For more information about software maintenance renewal and
unlock codes, see the MVRsimulation Product Installation Guide.

Chapter 2 Exploring the VRSG System 2-3

About making a temporary license permanent or renewing
product maintenance

VRSG is initially delivered with a temporary license, which has an expiration date. This date
is based on the payment terms of the purchase and an additional grace period. A few days
before the temporary license is due to expire, a warning message will appear when you start
VRSG, reminding you to email MVRsimulation to obtain a permanent license. When your
VRSG license maintenance plan nears expiration, a reminder message will also appear. For
information about obtaining an unlock code to update your VRSG license in either case, see
the MVRsimulation Product Installation Guide.

Setting VRSG session options and preferences in the
Dashboard

The VRSG user interface consists of the Dashboard where you specify session settings, and a
visualization window where VRSG renders the 3D virtual terrain.

| @ MVRsimulation VRSG v7 1 X

s -

’i e Ik > B

& VRSG 7 Dashboard

S | B Optoms Somne o 1 fwcwiviin |
SatgFuaneien | ssachOpters | Vewporss | Gasher | Evwoment Piefeences | Scenwor | ooeses |

Cenbater Cam TisweiMode Cosraste Dispiay Diaplay Made AN/ Rsimaion
] - & Fmary 2| | =]
5 5 = gic 7
=l =]] Fre—voe =]
Trwsisbon Rolias | Eye Hegh [T0 = ok |
DulayHUD [Cosund G Ebevate e |
I G o Ormstation
@ T Saue Settings...
b [E W G || Browe 1
=] Film hiama Profa toptonsl . 0
"""" = Help.. |

The Dashboard shown here in front of the VRSG visualization window.

Each tab in the VRSG Dashboard contains various settings and preferences for the virtual
world session, such as network options, display parameters, paths to the 3D terrain, models,
and scenarios to render, environment conditions, entities to attach to, and more.

2-4 MVRsimulation VRSG User’s Guide

The following example shows the VRSG Dashboard:

Initially set to

visualize
MVRsimulation’s

Hajin, Syria, terrain,
which is installed ~
with VRSG.

& VRSG v7 Dashboard ? w

Oceans | Shadows | VR Options | Sensor | About | Record Video |

Startup Parameters I KtachOptions | Viewpoints | Graphics] Envionment | Preferences] Scenarios] Q 9

Output Device |0.0: NVIDIA GeForce RTX 3090 24GB | [¥ Enable Sensor Modes y s .
™ Enable Mission Functions M simulation
UDP Poit [3000 (DIS Defau is 3000) [™ Enable Radar

™ Enable 3D Sound

Exercize ID |1 (Ofor all) ™ Mutichannel Master Start VRSG

¥ Enable Folder Pre-Scanning
Folders for Temain, Models, Scenarios, and Other Content

g R
J s m Save Settings...

Input Devices

BDOF Controller: SpaceMouse Pro Load Settings...
Joystick Device: Detected More Options...

Tracker: HTC VIVE

The action buttons on the right side of the Dashboard apply to all settings.

e Click the Start VRSG button to switch to the visualization window. The label on the
button reads “Start VRSG” when you first start a VRSG session. That label changes to
read “OK” after you have launched VRSG and 3D terrain (and other content) has been
loaded in the visualization window.

e To switch focus between the visualization window and the Dashboard, press the Esc key
on the keyboard. If the Dashboard is hidden, this displays it in front of the visualization
window. Press Esc again (or click OK) to dismiss it.

e Click the Exit button to end the VRSG session.

e When you exit from VRSG, most Dashboard settings are saved in the file
DefaultConfigMds_<machineName>.json, located in the directory
\MVRsimulation\VRSG\Settings. You can however save settings specific to a particular
configuration in a unique settings (*.json) file.

e C(Click the Save Settings button to save the VRSG startup parameters to a unique settings
(*.json) file that you define. If you load a variety of different terrain regularly in VRSG,
saving settings is a quick way to save the paths to different directories that contain
terrain, models, and scenarios, as well as environmental settings like fog color, cloud
coverage, and so on. That way you can easily restore those paths and settings at a later
time by loading the .json file.

Chapter 2 Exploring the VRSG System 2-5

e Click the Load Settings button to load the settings that are stored in a JSON settings file
(.json). By default, VRSG starts with the file DefaultConfigMds <machineName>.json
located in the \MVRsimulation\VRSG\Settings subdirectory. You can specify a different
settings file to load that contains the startup parameters that you previously saved
separately from a particular session. Upon startup, if no settings file is specified VRSG
loads whatever was loaded for the previous VRSG session.

e Click the Help button to display the Dashboard’s online Help, which provides
information about the fields and controls in each tab.

Navigating the virtual world display

You can navigate in VRSG’s visualization window and attach to entities in a virtual world
scenario by using the keyboard and a game controller.

Using the keyboard, you navigate by pressing the arrow keys and key sequences that include
the arrow keys and the Shift key.

For unconstrained database navigation, a 6DOF device is preferred. Although you do not
have to use a 6 DOF controller with VRSG, most users prefer to use one, because it provides
optimal 360-degree navigation in any direction, thus a more intuitive virtual world
experience. For this reason, most complete VRSG systems are sold with a 3dConnexion 6
DOF game controller.

As a secondary device, you can use a gamepad or joystick for fixed-wing mode, manipulating
a First Person Simulator character, or controlling a simulated UAV camera view.

Using a 6DOF controller

VRSG functions map to buttons located on supported 6DOF controllers. You can adjust the
sensitivity of the controller on the Preference tab of the Dashboard. In addition, you can slow
down the gain dynamically as you move through the virtual world by pressing the Y key on
the keyboard to turn on Nudge mode. Press Y again to turn it off.

VRSG supports the Logitech 3Dconnexion SpaceMouse Pro, and SpaceMouse Compact
6DOF controllers.

SpaceMouse Pro and SpaceMouse Compact 6DOF controllers.

These controllers use a knob called a controller cap which provides the 3D navigation by
flexing in all directions. When you use the device with VRSG, moving the cap left or right
moves in those directions, pulling and pushing moves up and down, pushing the cap away

2-6 MVRsimulation VRSG User’s Guide

Indicates VRSG
successfully found
the attached
controller (in this
case a SpaceMouse
Pro) and gamepad.
In this example,
VRSG has also
detected the
presence of an
HTC VIVE device.

from you moves forward, pulling it toward you moves backward, and rotating or tilting the
cap rotates the view about the respective axis.

a i»

Left / Right

Buttons 1, 2, T, L, R, and F on the SpaceMouse Pro correspond to VRSG functions in the
virtual world. For example, by pressing the R button on the SpaceMouse Pro you can cycle
through the attachment mode options, which correspond to the Mode options listed in the
Attach tab of the VRSG Dashboard.

If you are short on work space, you can also use the SpaceMouse Compact, which is a small 6
DOF controller without a wrist rest and only two buttons. You can access VRSG functions
(mapped to buttons on the two controllers) with keyboard shortcuts and on the Dashboard.

When you first start VRSG, the status of detecting an attached controller is displayed on the
Startup Parameters tab as shown:

& VRSG v7 Dashboard

Oceans | Shadows] VR Options | Sensor | About | Record Video |
Startup Parameters i KtachOptions | Viewpoints | Graphics] Envionment | Preferences] Scenarios]

¥ Enable Sensor Modes

" Enable Misslon Functions
7 Enable Radar

[~ Enable 3D Sound

™ Muttichannel Master

Output Device |G 0: NVIDIA GeForce RTX 3090 24GB _'_J

UDP Pott [3000 (DIS Default is 3000)
Exercize ID |1 {Ofor all)

Folders for Temain, Models, Scenarios, and Other Content

¥ Enable Folder Pre-Scanning

j

j i v Remove
Input Devices

6DOF Controller: SpaceMouse Pro

Joystick Device: Detected More Options...

Tracker: HTC VIVE

Chapter 2 Exploring the VRSG System 2-7

The following example describes the button mapping of a 6DOF controller to VRSG features:

Attach to next

Add/Remove entity
preferred entity.

to/from preferred list.

Attach to

Attach/detach from network
next entity.

entity or cultural feature
located in the center of the
screen.

Change attachment mode.

Display onscreen help.

3Dconnexion SpaceMouse Pro.

You can adjust the sensitivity of the controller on the Dashboard’s Preferences tab, as
previously described. In addition, you can slow down the gain dynamically as you move

through the virtual world, by pressing the Y key on the keyboard to turn on Nudge mode.
Press Y again to turn it off.

Using a gamepad or joystick
The Logitech F310 gamepad is MVRsimulation’s joystick-type device of choice.

Logitech F310 gamepad.
Gamepads and joysticks are used in VRSG in the following cases:

e Flying the terrain database in fixed-wing mode. Press F11 on your keyboard to activate
fixed wing mode; press F11 again to deactivate it. Fixed wing mode flies a straight path.
You can change direction and orientation of eyepoint with the left thumbstick on the
gamepad. The right thumbstick acts as a throttle, which you move in the right-left
direction to adjust the speed.

e Controlling a simulated UAV camera in UAV View mode, which enables you to attach to
a DIS entity that supplies the UAV airframe telemetry. In this mode, VRSG uses an

2-8 MVRsimulation VRSG User’s Guide

internal sensor payload model, which requires an attached gamepad to pan and zoom the
camera view. For more information about using a gamepad with UAV mode, see the
chapter “Configuring VRSG for Simulating UAVs.”

Creating a dismounted character to perform activities on the database in VRSG First
Person Simulator (FPS); press F9 on your keyboard to instantiate an FPS character. For
ease of use in manipulating a character in FPS, MVRsimulation strongly recommends the
Logitech F310 gamepad. With two analog thumbsticks, digital buttons, precise D-pad,
and smooth, precise action, this gamepad is the ideal input device for manipulating the
character's movements and various functions such as firing weapons, laser ranging or
designating in JTAC/CAS mode, and so on. For more information about using a gamepad
with FPS and with UAV simulation, see the chapters “Using 3D Characters in VRSG”
and “Configuring VRSG for Simulating UAVs.”

Specifying terrain and other startup parameters

On the Startup Parameters tab, you specify information about the VRSG session, such as the
3D terrain and other content to load, network settings, DIS protocols, and whether to run
VRSG in physics-based sensor mode. These settings can be used for a single session or can
be saved to a settings file to use again in subsequent sessions, as mentioned earlier.

VRSG can render any 3D terrain that is in MVRsimulation’s VRSG round-earth terrain
format (MDS). For example, after you install VRSG, you can immediately load one of the
demo terrain datasets that were also installed. By default, the Hajin, Syria, terrain will load
when you first start VRSG after installation unless you specify other terrain to load.

Other 3D terrains you can use include:

Terrain drives you received from MVRsimulation containing 3D terrain of CONUS++ or
other region of the world.

Terrain tiles created with MVRsimulation’s Terrain Tools.

OpenFlight terrain databases you convert to MDS terrain tile format using
MVRsimulation’s OpenFlight conversion utilities that are delivered with VRSG. (See the
chapter “Converting FBX and OpenFlight Formats to MVRsimulation Runtime Formats”
for more information.)

Databases obtained from a third party, such as a government agency or contractor.

Chapter 2 Exploring the VRSG System 2-9

When you start VRSG, the Dashboard appears with the Startup Parameters tab displayed:

& VRSG v7 Dashboard
Activates VRSG'’s

The number Ofthe Oceans | Shadows] VR Options | Sensor | About | Record Video | .
exercise active on Sartup Parameters | Atach Optors | Viewparts | Grephcs | Enviorment | MWW sensor view modes,
DIS network. (Use 0 and the Sensor tab.
to receive all Output Device [0.0: NVIDIA GeForce RTX 3000 24GB v | ¥ Enable Sensor Modes
. " Enable Misslon Functions

exercises.) :) Enables VRSG to

UDP Port (2000 (DIS Defauit is 3000) I™ Enable Radar listen to CIGI

i isten to
Instructs VRSG to \ I™ Enable 3D Sound \
i Exercise ID |1 (Dfor all I~ Muttichannel Master messages for
pre-scan all folders in = (Ofor 30 L levation look
[¥ Enable Folder Pre-Scannin elevation lookup,

its search path prior
to runtime. Turned on

laser range find,
collision detection,

Folders for Temain, Models, Scenarios, and Other Content

It N : ¢ .
by defau J | and intersection with
i v dynamic models.
The search path: a
list of all the / i Use VRSG as a multi-
directories of all 6DOF Controfler: SpaceMouse Fro
content that VRSG Joystick Device: Detected _More Options. | chcznnel Sl z;e.ahlth or lto
should loadfor a Tracker: HTC VIVE test a mu l-C am.w
valisati) configuration without a

visuatization Session. simulation host model.

Add or remove directories for terrain, Click to set network options.

models, and any other files you want

VRSG to load.

e Output Device — The monitor on which VRSG will render the 3D scene. VRSG supports
the use of multiple monitors in one system, as described in the section “Using VRSG on

multiple monitors” later in this chapter. In the example shown above:
0.0: NVIDIA GeForce RTX 3090 24 GB

the first number is the video card index, and the second is monitor index. Following the
name of the video card is the amount of memory on the card.

e Port — VRSG expects all DIS participants/traffic to be on a single port; default is 3000.

e Exercise ID — The number of the exercise active on DIS network. (Use 0 to receive all
exercises.) All participants in an exercise must use the same exercise number in this field
in order for entities to be visible on the network. If you are running scenarios exported
from VRSG Scenario Editor, the exercise ID (and port number) must match what was set
for the scenarios. If you run VRSG with Battlespace Simulations’ Modern Air Combat
Environment (MACE), be sure the same exercise number is listed in MACE as well.

e Enable Sensor Modes — Activates VRSG’s sensor view modes and the Sensor tab, as
described later in this chapter, and more fully in the chapter, “Working with Sensor-View
Modes and Physics-Based IR.”

e Folders for Terrain, Models, Scenarios, and Other Content — VRSG’s search path of
directories of all the content VRSG should search and load in the visualization session.
For more information about loading terrain and content into VRSG see the section
“Setting up search paths to terrain and other content” later in this chapter.

e Enables Mission Functions — Activates processing of CIGI mission functions (e.g.
HAT/HOT, Line of Sight Requests, Collision Segment Notifications). In a multichannel
environment, only one VRSG channel should have this option enabled, otherwise the host

2-10

MVRsimulation VRSG User’s Guide

will receive mission functions responses from multiple channels. See the appendix “CIGI
Version 4.0 Support” for more information.

e Enable Radar — Supports the running of a radar simulation on top of VRSG. See the
chapter “VRSG Radar Simulation” for more information.

e Enable 3D Sound — Activates support for sounds associated with events, as described in
the chapter “Integrating 3D Sounds.”

e Enable Folder Pre-Scanning — Instructs VRSG to pre-scan all directories in its search
path prior to runtime and maintain a local map of where files are located. This option,
enabled by default, speeds up load times in most configurations in which VRSG is run.

Note: Once you have launched the VRSG visualization window, the settings on the Startup
Parameters tab are no longer editable. The tab is displayed in read-only mode. (Settings on
most other Dashboard tabs remain editable throughout the VRSG session, except for
specifying the RTSP mode and port on the Record Video tab.)

Setting up search paths to terrain and other content

Upon startup, VRSG loads by default the terrain, model, scenario, and texture directories that
were installed in its installation path. When you first start VRSG after it is installed,
MVRsimulation’s Hajin, Syria, terrain will load by default, unless you specify other terrain to
load. The set of directory paths of 3D content you instruct VRSG to load is called its search
path. You can instruct VRSG to load other terrain, models, textures, scenarios, and so on, by
specifying a different search path.

In the Folders for Terrain, Models, Scenarios, and Other Content section of the Startup
Parameters tab, list all paths to terrain, models, and any other files (such as cultural feature
files, scenarios) you want VRSG to load that were not installed with VRSG. For performance
reasons, VRSG’s search is not recursive; you must specify each directory you want to be
searched, either explicitly in this field or in a text file called VRSGTerrainSearchPath.txt,
which is described in the chapter “Loading Content into VRSG.”

The order in which directories are listed in the Folders for Terrain, Models, Scenarios, and
Other Content section is critical, as VRSG searches the list from top to bottom. For example,
if you have a small area of high resolution terrain of an airfield that you want to render along
with lower resolution terrain of the larger region that includes the airfield and much more,
you would list the directory that contains terrain tiles of the higher resolution first (that is,
higher in the search path list). For more information about configuring content for VRSG, see
the chapter “Loading Content into VRSG.”

Setting additional startup parameters

On the Startup Parameters tab, click the More Options button to display a dialog box in which
you specify networking settings and other information:

o DIS network interactions. For entities to appear in a network exercise, each VRSG
participant must have unique Site Host and Entity values set in this dialog box, and a
common Exercise ID specified on the Startup Parameters tab.

e Set up multiple multicast addresses if your simulation requires it. To do so, click
Multicast Setup to display the dialog box in which, for each multicast group, you enter
the address to subscribe to, and then click Add.

Chapter 2 Exploring the VRSG System 2-11

Instructs VRSG to rely
on the timestamp in the
DIS PDU header
provided by the
simulator to optimize
dead-reckoning. If this
option is not selected
(the default), VRSG
assigns its local clock
time to a PDU when
the PDU is received.

Settings for UAV.
simulation.

Multicast Setup x

Enteratidness and chek Add
[z o 2 Add > J

i
<< Rmane

i Cancel

Multicast Setup dialog box.

e Client machines to set on the UAV master machine for UAV simulation, as described in
the chapter “Configuring VRSG for Simulating UAVs.”

More Startup Parameters 7 > . .
Click here to display a
DIS Netwarking dialog box in which you
Destination Address [19216630.2585 Mullicast Setup.. | ————T——— can specify th.e address
for each multicast group.
DIS Wersion ﬁ 4 Entity Timeout Period {10 (sec)
[T TrustPDU Timestamps [~ Use High Order DRA e Supportfor hlgher_
order dead reckoning
DIS Presence algorithms such as
@ MNone Stealth PDU (201) " Eniity State PDU those that include
Kind Domain County Cat SubCel. Spc Exra acceleration and angle
T T e e e e T rates.
Site Hast Entity [7A
1 |2 {137 ellow
Uy Ports and Addrass
T Visual [5000 MUSE [5000 Address [192168.30255 |
Cancel |

Setting entity attachment options

On the Attach Options tab you specify which entities to add or attach to your virtual world
display, which mode of attachment to use (related to the viewpoint), and which entities to
detach from or remove from the session. The All Entities list is populated with the entities
mapped in the ModelMap.ini file which are on the network at a given moment, which is
described in the chapter “Configuring Models and Events.”

Not only can you attach to a dynamic entity; you can attach to a static model too. After
attaching to a static model you can move it to refine the model’s position on the terrain. (For
information about adding dynamic and static models directly to a VRSG scene, see the
chapter “Configuring Models and Events.”)

You can select multiple entities at once for adding or removing them from the preferred list.
Press and hold the Shift key to select contiguous entities in the list; press and hold the Control
key to select noncontiguous entities. Double-click on an entry from either list for a quick
attachment.

2-12 MVRsimulation VRSG User’s Guide

A subset of the entity list; shows
the entities that you frequently
/ attach to.

& VRSG v7 Dashboard

Shadows | VR Options | Sensor | Abgut | Record Video |
The entities VRSG Startup Parameters Aitach Options l Viewpoints | Graphics | Environment | Preferences | Scenarios Oceans |
knows about, which All Entifies Prefarred Entities
1:1:18078 (F-16C.U2) Aiaah 1492 [OFELINE] |
you can aﬂaCh to 1:1:18079 (F-16C.UT)
during the 1:1:18080 (F-16C.U3) =
. . . 1:1:18083 (human-t1) etach
visualization 1:1:18084 (human-12)
session. 1:1:18085 (human-t3) Add >
1:1:18086 (human-t4)
1:1:18087 (S430 AF 1)
1:1:18088 (human-t5) << Remove
Select
Attach Mode

Current mode of Tether Free ~| I Enable mode for game dxntraller

attachment to an

entity or cultural Munition Attachment Behavior

feature. [Attach to munitions fired from the vehicle I'm atiached
After munition detonates, plegse: ileave me unattached _V_J
Makes the selected attachment Click to attach to a particular
mode available to select with a entity (or cultural feature) by
control on the 6DOF controller. its site/host/ID or by marking.

Select the Enable Mode for Game Controller checkbox to attach to and detach from entities
and cycle through the attachment modes using a 6DOF game controller. All features available
through the game controller are described later in this chapter in the section “Navigating the
virtual world display.”

The Attach modes are for attaching to an entity:

Attach Mode
Compass j [+ Enable mode for game controller More Options.. I
Tether Foed |
Compass
M
Orbit
Mimic ions fired from the vehicle I'm attached to

.please: |leave me unatiached. 2]

Attaching to an entity

To attach to an entity, select the entity and click Attach (or press the appropriate button on
your game controller). You can also attach to an entity by simply positioning the cursor
directly on the entity and pressing the middle mouse button/wheel. When you do so, you
become attached to the entity in the attachment mode selected in the tab. To detach from the
entity, press the D key on the keyboard.

Click the Select button on the Attach Options tab to attach to a particular entity or cultural
feature by its site/host/ID or its marking. When the Select dialog box appears, select whether

Chapter 2 Exploring the VRSG System 2-13

to attach to the entity or cultural feature or add it to your preferred list of entities you will
attach to during the session. Then provide the means of identifying it.

Select Entity ? =
| rActions [select 2t least one)
| ¥ Attach To Erity [T add Ta Preferred List
| Cancal |
Enfity Selection
| Sit Host Vehice
| @ Selact By D [5_" [Too0e

I Marking
| | € selectByMarking |

When you select an entity by marking, a dropdown list appears with a list of the entities that
match the characters you have typed so far, which means you only need to type as many
characters as required to get a unique match.

Displaying dynamic entity IDs and culture IDs directly on
the scene

You can display entity ID numbers in the virtual world display by pressing F12 key on the
keyboard, as shown on the next page, or by locating the entity’s entry in the ModelMap.ini as
described in the chapter “Configuring Models and Events.” Pressing the F12 key on the
keyboard displays the ID information of entities present in the scene in three ways. Each
subsequent press of F12 cycles the manner in which the entity ID is displayed. In a multiple
viewport setup, this information is displayed in one viewport. (For information about using
more than one viewport, see the section “Using multiple viewports™ later in this chapter.)

The VRSG screen captures on the following page show the three options for displaying the
IDs of the convoy entities visible in the scene.

e The first image shows the complete entity information including site-host-entity,
callsign, DIS enumeration, and appearance state.

o The second image shows only the callsign.

o The third image shows a dot (.) representation shown at the bottom of the entity. This
model representation is useful in situations where there are many entities grouped
together in a scene and you want to see the location and movement of the group.

If your entities have been assigned as friendly or opposing forces, the entity ID information
will display in the corresponding friendly/opposing color as configured in the More
Preferences dialog box described later in this chapter.

2-14 MVRsimulation VRSG User’s Guide

The dot denotes
the presence of a
dynamic entity.

Chapter 2 Exploring the VRSG System 2-15

To display information about cultural features in the scene, press Ctrl-F12. The following
example shows the resulting names of static models displayed from pressing Ctrl-F12:

Notice the example also shows VRSG’s runtime grouping of identical models and
neighboring models into clusters and aggregates for performance efficiency.

You can obtain more information about a specific entity by attaching to it (clicking on it with
middle mouse button/wheel) and then pressing F1. The entity information is displayed below
the onscreen help as shown in this next image:

Information
about the
attached entity.

To cease or pause entity propagation, press Ctrl-F. This action ceases dead reckoning, timing
out, and processing PDUs. Press Ctrl-F again to restore normal processing. (For information
about all of VRSG’s keyboard functions, see the appendix “VRSG Keyboard Functions.”)

2-16 MVRsimulation

VRSG User’s Guide

Offsets relative to
the DIS body
coordinate system.

Required for using

a gamepad with

VRSG (in UAV __——
camera, fixed-wing,

or FPS mode).

The Attach Mode options attach an entity to the viewpoint in the following ways:

Tether Fixed — Attaches the viewpoint to the entity at a fixed distance; when the entity
changes orientation, the viewpoint also changes orientation.

Compass — Attaches the viewpoint to the entity at a fixed distance from the entity in a

world coordinate system; when the entity changes orientation, the viewpoint’s orientation

(such as north-south) remains unaffected.

Orbit — Rotates the viewpoint around the entity, at fixed a distance. Shift-left click to
define the point of rotation. Click again (anywhere) to remove the point of rotation.

Mimic — Attaches the viewpoint to the crew compartment of the entity.

Track — Attaches the viewpoint at a fixed point with the entity centered in the field of
view.

game controller).
Gun View — Attaches to the articulated gun of an entity.

UAYV View — Enables you to attach to a DIS entity that supplies the UAV airframe
telemetry. In this mode, VRSG uses an internal sensor payload model, which requires an
attached gamepad or other joystick device to pan and zoom the simulated camera view.

Click the More Options button to display the Attach Offsets dialog box, where you specify
the viewpoint to associate with a particular entity and other options. The Joystick Slewable
option, selected by default, is required for using a gamepad with VRSG (in UAV camera,
fixed-wing, or FPS mode).

Attach Offsets

Mimic Mode Offset (meters, hull relative)

% [ooo

v
z 0o

[+ Lock Position [v Joystick Slewshla [+ Display Vehicle

Gunner Yiew Offset (meters, gun relative)

% [0 Fov1 [10.00
2 ;
v [ooo Fovez [30.00
x
z
z [eo0 I
|~ Lock Positian ~ [¥

2D HUD display for the

AV Options UAV camera view.

— =]

Sensor Dverlay |GBI’IOFIC Owverlay Color

Femote Regeneration |(—.A eneratar

Ok Cancel

Tether Free — Attaches the viewpoint at a variable distance (which you can modify with a

Chapter 2 Exploring the VRSG System 2-17

For the UAV options Sensor Overlay and Overlay Color fields, select the 2D overlay display
appropriate for your camera view. VRSG includes built-in 2D “HUD” overlays for many
popular UAS systems and targeting pods. Use the Remote Regeneration options
Generator/Receiver when a given VRSG machine in UAV mode transmits telemetry packets
via DIS packets to a remote VRSG client machine. See the chapter “Configuring VRSG for
Simulating UAVs” for more information.

Instead of attaching to an entity, you can fly through the virtual world unconstrained as a
stealth. A stealth in the context of distributed simulation is a 6 degree-of-freedom (6DOF)
massless entity that can fly anywhere in the virtual world and observe the 3D world from
vantage points not normally possible when using a conventional ground or winged vehicle.

You can also attach to a point on the terrain to orbit around that location. Press Shift and
click the middle mouse button/wheel to orbit about the terrain where you clicked.

Setting viewpoints

Select a viewpoint
in the list and
click Restore to
go to that
viewpoint.

On the Viewpoints tab of the VRSG Dashboard, you specify the viewpoints to save or return
to while visualizing a set of VRSG terrain tiles. A viewpoint contains information about a
view, or eyepoint: its location, orientation, near clipping and field-of-view settings, the
attachment mode in effect, and some environment settings. Saving viewpoints is an easy way
to keep track of points of interest on the 3D terrain that you want to return to in a
visualization session.

List of saved viewpoints. If you name a Enter the coordinates of a location you want
viewpoint “default” VRSG will display that VRSG to move the eyepoint to in the rendered
viewpoint when it first loads the virtual scene. Use this field to specify a precise
terrain. location as an alternative to navigating to it

with a game controller.

&> VRSG v7 Dashboard

Shadows | VR Options] Sensor] About Record Video |

Startup Parameters] Attach Ogtions Viewpoints | Graphics] Environment Preferencés | Scenarios | Oceans |
Saved Viewpoints Teleport

Latvia - Segulda ~

Latvia - Senite

Latvia - Zulipe

Libyal0& Format N|S DD MM SS E[W DD MM SS

Libyal0g&

Libya00% Example: N36 21 02W121 2040

Libya011

MischiefReef-0730 (" Google Maps URL
MischiefReef-1003)

MischiefReef-1024
MischiefReaf-1106

MischieMeef-1213 " MGRS Grid

MischiefReef-1302
MischiefReef-1802 (" Geocentric
MischiefReef-1803 o
C UTM
Save.. | /Restore | Rename... | Delete C TilelD
Edit the viewpoint’s name. The coordinate system for the

location you enter in the
Teleport field.

2-18 MVRsimulation VRSG User’s Guide

Click Save to save your current view of the database as a viewpoint. When you do so, a
dialog box appears requesting a name for the new viewpoint:

Save Viewpoint X
. . oK l

Enter a name for the viewpoint
lcontroltawer Cancel f

s

[Auto-Restore this viewpoint

You can also just press S to save a viewpoint. This saves a viewpoint with a default name
“Viewpoint n”” where 7 is the sequential number of saved viewpoints. You can rename the
viewpoint to a meaningful name later.

Viewpoints are usually relative to the terrain. However, if you save a viewpoint while
attached to an entity, you can select the checkbox “Save as entity-relative viewpoint” instead.

The Auto-Restore option allows for the viewpoint to be automatically restored when VRSG
sees a PDU with the same timestamp as the time associated with the viewpoint when it was
saved. This is useful for after-action review (AAR) purposes when the DIS PDUs are being
replayed from a DIS playback tool.

By default, viewpoints are named Viewpoint 1, Viewpoint 2 and so on, but you can give
viewpoints more meaningful names, as shown in the example above. Rename a viewpoint by
selecting the viewpoint in the list and clicking Rename. When the Rename Viewpoint dialog
box appears, change the name of the viewpoint and click OK. You can explicitly assign a
default viewpoint for VRSG to display when it loads the database, by naming the viewpoint
“default.” Bear in mind that a viewpoint includes saved near clipping and field-of-view
(FOV) settings, thus the “default” viewpoint will restore such saved settings each time VRSG
is started.

You can select multiple viewpoints at once, for example to delete them, by holding the Shift
key down for selecting contiguous viewpoints or by holding the Control key for selecting
noncontiguous viewpoints.

Viewpoints are stored in an editable ASCII .viewpoint file located in the
\MVRsimulation\VRSG\Viewpoints directory. The viewpoint file is always named
“vrsg.viewpoint” as in \MVRsimulation\VRSG\Viewpoints\vrsg.viewpoint.

Although VRSG always writes new viewpoints to the file
\MVRsimulation\VRSG\Viewpoints\vrsg.viewpoint, VRSG supports the presence of multiple
viewpoint files located in different subdirectories, including, for example, directories storing
terrain tiles organized by geographic area. During visualization, VRSG loads any relevant
vrsg.viewpoint files it finds in its search path (that is, the directories listed in the Folders for
Terrain, Models, Scenarios, and Other Content section of the Startup Parameters tab) and
merges their content. The viewpoint file is formatted as an editable ASCII text file, which
means you could copy/paste any number of new viewpoints from the default vrsg.viewpoint
file to a terrain-specific viewpoint file.

An example of terrain-specific viewpoints can be found in any of the terrain datasets installed
with VRSG, such as \MVRsimulation\VRSG\Terrain\Somalia\Kismayo\vrsg.viewpoint.

Chapter 2 Exploring the VRSG System 2-19

VRSG can move
the eyepoint to a
specified Google

VRSG saves a viewpoint file each time a screen capture is saved to an image file. This saved
viewpoint file contains the viewpoint of the exact location on the terrain from which the
screen capture was taken. To return to the location of the screen capture, drag the .viewpoint
file from the Windows File Explorer and drop it on the VRSG visualization window; doing so
moves the eyepoint to the location of the screen capture. Once you use this viewpoint, it
becomes persistent; VRSG saves it to the vrsg.viewpoint file and it appears in the list on the
Viewpoints tab. See the section “Taking screen captures of the rendered scene” later in this
chapter for more information about screen captures.

Note: If you are running VRSG on a system that has User Access Control (UAC) activated,
the vrsg.viewpoint file will not be saved or updated in the VRSG installation directory if the
\MVRsimulation\VRSG directory is located in C:\Program Files. Instead the updated
vrsg.viewpoint file will be stored in the directory
C:\Users\<username>\AppData\Local\VirtualStore \Program Files\MVRsimulation\VRSG.
To have an updated .viewpoint file take effect the next time you start VRSG, copy the
vrsg.viewpoint file from the \VirtualStore\Program Files\MVRsimulation\VRSG directory to
C:\Program Files\M VRsimulation\VRSG. To avoid having VRSG files written to the
\VirtualStore directory, turn off UAC from the User Accounts control panel if your site policy
allows it, or install VRSG in a different directory such as C:\MVRsimulation\VRSG.

To have VRSG move the eyepoint to a precise location in the rendered scene, enter the
desired coordinates in the Teleport field of the Viewpoints tab, as an alternative to navigating
to it with a game controller. The teleport coordinate system defaults to the display coordinate
system set on the Preferences tab, but you can change the teleport coordinate system here,
independent of the display coordinates. (Changing the teleport coordinates does not change
the display coordinate system.)

New in VRSG 7 is the ability to teleport to a location specified in Google Maps URL format.
Select the Google Maps option, then copy/paste a Google Maps location from the browser to
the Teleport field, and then click OK.

Telepor

[heps:jjwww google com/maps/@34 6885374 40 82908311 Ok

Example:

hitps: [fwaw, gaogle commaps/@35 TE25229.-105 7969724
Maps URL pasted

from the browser.

® Google Maps URL
" Geodelic

" MGRS Gnd

" Gaccantic

- UTM

 TielD

The format requires the text google.com/maps/(@ followed by the lat/lon coordinates. Any
text in the URL before or after those values is ignored, including other text between "maps/"
and "@".

Teleporting to a location based on tile ID is also supported. Select the Tile ID option and
enter the name of a terrain tile to center the view on that tile and click OK. Coordinates are
encoded within a tile’s name. This option is useful for moving the eyepoint to a specific tile.

2-20 MVRsimulation VRSG User’s Guide

Teleport—— :))
VRSG can use the [0z mas ok |
name of a specific
terrain tile to
center the view
on that tile.

Fomat tile_id
Exampla: 4b-diedl0

¢ Google Maps UAL
 Geodetic

¢ MGRS Grid

" Geoceniic

© UTM

@ TilelD

Another way you can move the eyepoint directly to a terrain tile of interest in a rendered
scene is to simply drag a tile in the current search path from the Windows Explorer to the
VRSG visualization window as shown in the following example:

Dragging the tile to the VRSG visualization window moves the eyepoint to the tile. This can
be useful when you load a large set of tiles with no set viewpoints and the initial scene
rendered on VRSG startup is of water. (To identify the tile name of a given geographic
region, use the MVRsimulation Terrain Tile Utility, which is described in the chapter
“Previewing Models, Effects, and Terrain.”)

Setting graphic options

On the Graphics tab, you specify scene display options, such as the field-of-view (FOV)
angles (magnification), levels of detail handling, volumetric cloud layer options, screen space
ambient occlusion, and the clip region.

Chapter 2 Exploring the VRSG System 2-21

The horizontal
viewing angle or
magnification.
Use the slider to
zoom in or out of
the scene.

How close to
the viewer
objects should
be rendered.

Distance to / More Options. .

the horizon.

Simulates
shadowing on
models in the
scene caused by
blocked ambient
light.

The cloud layer’s Scales LOD ranges across Enables (default) newer
altitude. VRSG channels in a handling of transitions
\ multichannel system. between terrain LODs.

@ VRSG v7 Dashboard

Shadows | VR
Startup Parameters ! Attach Options

Record Video |

references | Scenarios | Oceans !

tions | Sensor | About

| Viewpaints Graphics ! Environment

Levels Of Detail
[¥ FadelnLODs [+ Enable Marphing LODs

Graphics Parametars

Field-OfView (Degrees)

— 4

[+ Scale ranges for field-ofview

Cloud Layer
Mear Clip (Meters)

- f—————————— 30 Bottom srrers et 1200 {maters)
Ji 268 (meters)
J 100000

o Coverage | 51 (percent)

Thickness

Far Clip {Meters)

:l [~ Use Legacy Clouds

Screen Space Ambient Occlusion

[¥ Enable SSAQ [Gaussian Blur [¢ Enable Depth Pass
Resolu Jl 100 (% of backbuffer)
Distance —JI E00 (meters from eyepoint)

Graphics parameters

Use the Field-Of-View slider to set the horizontal viewing angle in degrees. Larger field-of-
view (FOV) angles correspond to lower magnification levels. Conversely, smaller FOV
angles correspond to higher magnification levels. VRSG automatically sets the vertical FOV
to be aspect-correct with respect to the horizontal FOV, based on the current viewport
dimensions. (For information about using more than one viewport, see the section “Using
multiple viewports™ later in this chapter.) If you need to enter explicit horizontal and vertical
FOV half-angles, click More Options to specify them in the More Graphics Parameters dialog
box.

Use the Near Clip and Far Clip sliders to define the clip region, the near and far distance at
which VRSG should render the scene. If you experience flickering or flashing in the scene
caused by z-fighting, adjusting these options, plus the FOV slider described above, are simple
ways to remedy the problem.

The greater the far clipping value (distance to the horizon), the more system memory is
needed to store and render the scene to that far clip distance. A problem with insufficient
memory can occur if you try to run a larger far clip plane than the complexity of the terrain
allows. If VRSG issues an “Out of memory” message in the VrsgError.txt file, try changing
the far clipping value to a smaller value. If you encounter this problem repeatedly, consider
adding more memory to your system.

Keep in mind that Near Clip and Far Clip settings are saved in viewpoints, as described
earlier. If your simulation starts, or keeps reverting to, a clipping value that you do not want,
check whether you have a viewpoint named "default” (which could be setting the unwanted

2-22 MVRsimulation VRSG User’s Guide

Near Clip or Far Clip), you can resave the viewpoint with the intended clipping value, or just
delete the default viewpoint.

Levels of detail

Normally, the Fade In LODs option should be selected to provide a smoother and more
continuous change between an object's various levels-of-detail. Although enabling this option
has a small impact on performance, it improves visual quality by reducing popping of scene
elements during level-of-detail transitions. Only unselect this option to improve a
performance issue. When this option is not selected, VRSG performs a discrete switch
between an object's levels-of-detail; this can result in popping artifacts when an object
switches levels-of-detail.

VRSG version 6.5 (and MVRsimulation Terrain Tools 1.6) introduced a new method for
rendering the transition between terrain LODs. In this technique, called LOD morphing,
terrain vertices are blended from their true elevation towards the elevation of the next lower
LOD before the lower LOD is reached. This technique (which also referred to as vertex
blending) replaces the legacy LOD fade-blending method specified by previous versions of
Terrain Tools and rendered in previous versions of VRSG.

By default, the “Enable LOD morphing” option is selected. If you need to render terrain in an
older version of VRSG or a mix of older terrain (created in Terrain Tools 1.5 or older),
unselect the Enable Morphing LODs checkbox. This action will force VRSG to render all
terrain with the legacy LOD fade-blending method.

The “Scale ranges for field-of-view” option globally scales LOD ranges across VRSG
channels in a multichannel system. This option is turned on by default. Turn it off in
situations where LOD switch points across multiple channels need to be consistent, as in a
dome display, where different channels projecting onto the dome may have different fields-
of-view.

Cloud layer

You control the display of clouds by specifying the altitude of the bottom of the cloud layer,
the thickness, and the percentage of cloud coverage.

The volumetric ray-traced cloud system enables you to set the cloud coverage from 0% to
100% (fully overcast).

Cloud Layer Cloud Layer
Bottom 1 4413 (meters) Bottom i 6257 (meters)
S , J' 5299 o oy
Coverage _j 47 (percent) _JI
5 - Broken [~ Use Legacy Clouds Coverage |5-Broken ¥ | [v Uselegacy Clouds
3- Scattered ~
4 - Scattered
5 - Broken
6 - Broken
7 - Broken
8 - Overcast hd

Select the Use Legacy Clouds checkbox to use the older volumetric cloud system, where
coverage and thickness are combined in predetermined settings from sparse cloud coverage to
solid overcast, as shown in the drop-down list in the legacy options shown above on the right.

Chapter 2 Exploring the VRSG System 2-23

VRSG scene with the default cloud system. VRSG with legacy clouds enabled.

You can also have clouds cast shadows on the terrain by using controls on the Shadows tab,
described in the section “Controlling the display of shadows.”

Screen space ambient occlusion

Screen space ambient occlusion (SSAO) is a shading effect that enhances the 3D perception
of the shape of all models (static and dynamic) rendered in a scene. SSAO simulates the
shadowing caused by the blocking of ambient light. By adding darkness to corners, crevices,
and other angular transitions, SSAO decreases the ambient lighting that occurs at the
intersection of planes on the surface of a 3D model or at the intersection of models and the
terrain.

When Enable SSAO is selected, use the Resolution slider to control the size of the
framebuffer to render (how much SSAO detail VRSG should render). The default resolution
is 50%. The Distance slider controls the distance from the eyepoint at which VRSG should
render the SSAO effect. The further the distance, the more graphically realistic the effect
appears, but at a higher the cost in frame rate.

VRSG scene without SSAO enabled. Same scene in VRSG with SSAO enabled.

Click the More Options button on the Graphics tab to display the More Graphics Options
dialog box, where you can set field-of-view and rendering options.

The Asymmetrical Field of View options are for creating independent half-angles for top,
bottom, left and right.

2-24 MVRsimulation VRSG User’s Guide

LOD range scale

LOD Range Scale is a factor for changing LOD ranges globally for the geometry and terrain
textures. The number scales the computed range to objects, so smaller values make objects
persist longer, adding more geometry to the scene. Load management (set on the Graphics
tab) modulates these values dynamically, unless No FOV Scaling is selected. These options
are useful to tune issues such as images switching out too quickly, rendering performance
needing improvement, and so on. If VRSG displays a message about a “thrashing texture,” it
means more textures are being requested from the scene than can fit into video memory.
Adjust both the Geometry and Texture sliders to a higher value to alleviate the video memory
problem. (Default value for both Geometry and Texture is 1.0.)

Rendering options
The availability and effect of the rendering options depends on the 3D graphics card in use.

e Sort Geometry performs an object-level sort of transparent objects from back to front.

e Synchronous Texture Paging instructs VRSG to synchronously obtain required terrain
textures from disk in the frame that they are requested. If this option is not selected,
VRSG uses any valid memory-resident level of detail while I/O is pending, and will
transition to the requested level-of-detail when the I/O has completed. If selected, the
rendering pipeline may stall to complete pending I/O operations.

For creating More Graphics Options x
independent half- Agymatic Fiald Of Yiew (degrees)
angles. = . . .
op[225 Factor for dynamically changing level-of-detail
T~ (et B 25 Right ranges for the geometry and terrain textures.

| — Load management (set on the Graphics tab)

Performs object- 22! am
f / * o modulates these values dynamically.

level sort of
transparent objects
Geometny: 1.01

k t t. I I . , .
Jrom back to fron f J Display support for use with monitors,

LoD Ranga Scale

Rendering Dptions " projectors, and graphics cards that are high

Toggles the display / dynamic range (HDR) compliant.
of light points built [¥ Sort Geomatry ¥ 32 Bit Depth Buler
into the terrain. [Synchonous Texture Peging [10 Bit Per Band Color Synchs the frame rate to the refresh rate of

W ¥ EyeTrackVisuslizaton | |~ the monitor. Selected by default and
Turns on stealth ——— . ’m/ required for multichannel systems.
view rendering of Max Testure Siza |None - i R J . 1 loaded
the headposition Anli-Alissing |4 Samples -]\ nstructs VRSG to downsize a oaae

; textures to 2048 x 2048, 1024 x 1024, or
andpupzl.data REHIPSIEES e 512 x 512 pixels. (VRSG can accept a
captured in the DIS A p) - 4096 4596 el
maximum texture size o X ixels

Stream. | oK | Ceancel | f p

without needing to downsize.)

Runway lighting visibility range scale
factor to apply to the terrain haze
settings on the Graphics tab.

e Enable Cultural Lights (turned on by default) toggles the display of light points built into
the terrain with MVRsimulation Terrain Tools (with a shapefile of Cultural Lights feature
type) typically used for illuminating road networks. Disabling such light points is useful

Chapter 2 Exploring the VRSG System 2-25

for ground-based simulations. This option does not disable light point models that are
placed on the terrain via a cultural feature file (vrsg.clt), such as runway lights.

10-Bit Per Band Color is intended for use with monitors, projectors, and graphics cards
that are high dynamic range (HDR) compliant. This option displays many more colors in
the scene than the default 8-bit color, resulting in nuanced, fine grain color changes with
minimized banding. For example, this option creates finer granularity in the FLIR sensor
scene. This option also affects screen captures and H.264 video. To check whether your
monitor is capable of handling 10-bit per band color (bpc), open the Nvidia control panel
and choose Display > Change Resolution. If 10 bpc is supported by your display, it will
appear as an option in the Output Color Depth drop-down list. To use the 10-bit color
option in a VRSG mode other than full-screen mode, set that10 bpc option in the Nvidia
control panel.

Vertical Retrace Sync synchronizes the frame rate to the monitor’s refresh rate by default.
This option is required for multichannel systems that need to stay in phase. Choose
Unsynchronized to have VRSG render as fast as possible. However, this option may
result in tearing of the visual scene, so it is most appropriate in situations where the visual
scene is not important, such as when using VRSG as a dedicated Radar server, or for
performance evaluation.

“ericel Retraca Sync |Monilor refresh rate v
onitr | 1

Max Texture Size

i ale
1/2 monitor refrech rate
113 manilor rafresh rate
14 manior rafresh rate

‘ Arti-Aligsing

To have the frame rate match the monitor refresh rate, choose the default option and then
choose the monitor refresh rate on Preferences tab as described later in this chapter.

Eye Track Visualization turns on the rendering of the eye-tracking data (head position
and pupil gaze) from a Varjo headset that was captured in the DIS stream in a recorded
VRSG session, as described in the chapter “Using VRSG with VR Systems, Trackers,
and Simulated Military Devices.” Head position is depicted with a head model and pupil
gaze direction is depicted with red and blue cones, as shown in these two examples:

2-26 MVRsimulation VRSG User’s Guide

Max Texture Size forces VRSG to downsize all loaded textures to 2048 x 2048, 1024 x
1024, or 512 x 512 pixels. The None option (the default) means that VRSG will not
downsize any textures. VRSG can accept a maximum texture size of 4096 x 4096 pixels
without needing to downsize. Limiting the maximum texture size may help if your
content is overloading video or system memory. You can override the selected Max
Texture Size option on a per-model basis with a file \Models\max_texture _sizes.txt, in
which you list one model per line, followed by the maximum texture size for that model
as described in the chapter “Configuring Models and Events.”

Anti-Aliasing performs 2-sample, 4-sample (the default), or 8-sample anti-aliasing on the
rendered scene; an option also disables anti-aliasing. Anti-aliasing is a method of
smoothing out jagged pixel edges in 3D objects and scenes to improve the visual quality.
Where an image's curves and line edges appear jagged, anti-aliasing creates the illusion
of blending by placing similarly colored pixels next to one another. The higher the anti-
aliasing level, the better the rendered scene appears, but higher levels use more video
memory and might cause a performance slow-down on your system. Modern game-level
graphics cards support up to 16 subpixel anti-aliasing. VRSG automatically enables 4-
sample full-scene anti-aliasing and 8-sample anisotropic filtering. This way, you do not
need to set anti-aliasing explicitly for the application in your graphic card’s control panel.

The RVR Multiplier option sets the maximum visibility of a runway light point as a
function of terrain visibility (haze settings on the Graphics tab). For example, a setting of
2.0 means that runway lights will be seen two times further than other scene objects.

Setting environmental options

Use the options on the Environment tab to specify various environmental characteristics of
the VRSG scene. You can make these changes before or after you start rendering the scene in
VRSG; changes you make during a visualization session are reflected in the rendered scene
immediately.

VRSG version 7 includes improved light, haze, and cloud interactions. The underlying
atmospheric model consists of 16 distinct layers each with unique visibility ranges and
wavelength-dependent absorption and scattering properties.

Environmental conditions that you can control in this tab are:

Sky models e Sun and moon angles

Haze visibility range and colors e Time-of-day clock and light source
Ground fog height and range e Ambient and diffuse lighting levels
Water textures (for 2D water) e Ephemeris calculated star positions

(augmented by a notional 5,000 light
point star field for night scenes)

The Visibility settings define the overall atmosphere visibility range of the rendered scene.

The Haze End slider indicates the range at which the terrain completely fades into the haze
color. Two haze colors must be provided.

Chapter 2 Exploring the VRSG System 2-27

e The Color option is the primary haze color used when the view is not aligned with the
sun. Color In Sun is the color of haze used when the view is aligned with the sun. The
actual haze color used for a pixel is a blend between the primary haze color and the Color
In Sun haze color. The angle between the line-of-sight vector to the object and to the sun
determines the ratio between these two colors.

e The Vertical Scale slider changes the rate of visibility improvement as a function of
altitude, when Ground Fog is not turned on.

The Ground Fog settings define an atmospheric layer that is close to the ground and ends at a
specified height. The density of the ground fog is described by the visibility range in effect in
that layer. VRSG calculates the depth into the ground fog layer that light must pass through
before it reaches the eye. This effect, which adds further attenuation beyond the atmospheric
haze, can be used to achieve the conditions of foggy or smoggy valleys with hilltops that
extend up through the fog or smog layer.

The Time of Day/Lighting Conditions options enable you to select a sky model, and create
lighting conditions for a day or night scene for simulating the light cast from the sun or moon
for shading purposes. You can also direct VRSG to simulate lighting conditions automatically
calculated from date, time, and geographic location.

VRSG includes an ephemeris model that can automatically calculate sun position, moon
position, star positions, and moon phase from date, time, and geographic location. This means
you can direct VRSG to simulate lighting conditions automatically calculated from a specific
date, time, and geographic location. Enter the year, month, and day, and drag the time-of-day
slider to the desired time. Various environmental settings automatically change in response to
the slider movement. You can optionally override the defaults by editing the specific
individual setting after you set the time-of-day. Override the size of the stars with the
starSizeScalePercent DWORD registry variable, as described in the Appendix “VRSG
Registry Variables.”

You can specify an explicit year, month, day, hour, and minute in Zulu/Universal Time
(UTC) or local time, or have VRSG obtain the date/time information from your system clock.

You can set specific custom lighting conditions manually in two ways:

e “Diffuse” light illuminates the scene from the direction of the sun (or the moon at night).
Diffuse light can cause shadows to be cast. Click the Select Diffuse color rectangle to
display a color palette from which you can select a color for the diffuse light source.

e “Ambient” light applies general illumination to the scene, and does not cast shadows.
Click the Select Ambient color rectangle to display a color palette from which you can
select a color for the illumination.

The options in the Sky Model drop-down list specify the type of sky to use for the scene, such
as Dawn, Dusk, High Cirrus, Cloudy, Night, and so on. The sky blends with the selected Fog
Color near the horizon. The None option displays the entire sky as the fog color.

To set up a night scene, select the None sky model, adjust the Visibility Haze colors, the
Moon light source direction, the Ambient and Diffuse colors, and optionally the moon phase.

The display of the moon requires the moon elevation angle to be above 5.7 degrees, and it be
at night time. The ephemeris model predicts the moon position as a function of date, time,
latitude and longitude. As long as these four inputs put the moon above 5.7 degrees, and it is

2-28 MVRsimulation VRSG User’s Guide

Overall atmospheric
visibility range of the
rendered scene.

Rate of visibility
improvement as a

function of altitude, ———

when Ground Fog is
turned off.

night time, the moon will display. (The moon will not display in the daytime even if it is
above the horizon threshold.)

Sun and Moon options set the position of the light source (sun or moon). This illumination is
independent of any 3D graphic of a celestial body that may be a part of the sky model texture.

The Elevation slider specifies the vertical angle of the light source upward from the horizon.

The Azimuth slider specifies the horizontal angle of the light source relative to north. Note
that the sky model is rotated about the Z-axis consistent with the azimuth, which is useful for
orienting the horizon glow of the sunset sky.

To specify a 2D wave and swell patterns to appear on the water surface of rivers, streams, and
ponds, choose one of seven 2D water texture options. This texture is used for VRSG’s default
2D water for non-ocean bodies of water (and for oceans too if the 3D Oceans setting is not
turned on in the Oceans tab). You can also use a custom water texture to override VRSG’s
default water texture, as described in the chapter “Loading Content into VRSG.”)

In addition to using the lighting and weather settings in the Environment tab, you can model
wind direction and magnitude for effects such as smoke and dust, as described in the chapter
“Configuring Models and Events.”

& VRSG v7 Dashboard

Shadows | VR Options] Sensor] About | Record Video The helghl and
Startup Parameters | Attach Options | Viewpoints | phi E | references | | Oceans | range ofthefog
Visibrlity Ground Fog layer close to the
c round.
Haze End (m) ks Ceiling Altitude (m) g
-| 101000 B P

Visibility Range (m)

J— 2309

Vertical Scals Color In Sun

f———— 5aq
—— Ground fog color.

Time of Day { Lighting Conditons

Ambient Diffuse

Lighting conditions Azimuth
for a day or night 1 I . Elevation
scene.) ~ Simulates the light
8 : e =
egacy SeaSiate |01 - Sky Model |HighCirrus - Moon Phase castfrom the sun or
it L ST moon for shadin
. Year (2020 Manth |Jun ﬂ Day |20 j f g
Sea state options to : purposes.
change the wave _—"| [local Tme 1 1200

and swell pattern
on the 2D water
surface.

Option to set Zulu/
UTC time or local time
for the scene.

Options to advance the time in a
scene, like a clock, starting from a
specified time.

Setting 3D ocean sea states and wakes

VRSG can simulate 3D ocean sea states with realistic 3D wave motion, multiple sea states,

vessel surface motion, 3D wakes,

accurate environment reflections, and bathymetry data in

MVRsimulation’s round-earth terrain format for shoreline wave shape and opacity.

Chapter 2 Exploring the VRSG System 2-29

Note: Currently, VRSG supports 3D water at sea-level up to 85 meters. VRSG will continue
to render bodies of water (rivers, lakes, and ponds) at elevation higher than 85 meters with its
legacy 2D water.

Entities with the DIS enumeration in the surface domain (domain 3) will properly clamp to
the ocean surface and will generate wakes automatically. A full network interface enables
DIS hosts such as Battlespace Simulations’ Modern Air Combat Environment (MACE) to
query the ocean surface to support their 3D boat dynamics simulation.

Use the options on the Oceans tab to specify various characteristics of the ocean and sea
vessel motion on the ocean surface. You can make these changes before or after you start
rendering the scene in VRSG; the changes are reflected in the rendered scene immediately.

e s ST

3D ocean sea state 6, with no ocean spray.

3D ocean sea state 12, ocean spray turned on.

To activate 3D ocean simulation, select the Enable Oceans checkbox at the top of the Oceans
tab. This option toggles rendering VRSG’s 3D ocean sea states and legacy 2D water. When
this option is enabled, the other options on the tab become available.

o Beaufort Sea State defines the level of impact of wind force on the sea conditions.
Specify a sea state based on the Beaufort wind force scale, ranging from 0 (calm seas) to
12 (rolling waves of hurricane conditions).

e Ocean Quality (Good, Better, Best) sets the resolution level (triangle density) of the
ocean surface. The Best option renders the highest level of detail, while the Good option
has the least impact on VRSG performance.

e Shoreline Awareness (Smooth, None), when set to Smooth, enables a higher-fidelity
smooth transition of shallow wave shape and water transparency near the shore,
especially when shoreline terrain contains bathymetry data. If you want to raise the sea
level and let the ocean flood over the terrain at the natural shoreline, set Shoreline
Awareness to None. (Bear in mind that with Shoreline Awareness turned off with None,
the wave shape and transparency shoreline features will not be in effect, and the ocean
might render above the terrain.)

2-30 MVRsimulation

VRSG User’s Guide

r

Turns on 3D ocean
simulation and

&9 VRSG v7 Dashboard

enables the options
on this tab.

Sets sea state based —
on the Beaufort wind
force scale (0 to 12).

Sets the resolution
(level of detail) of

the ocean surface.

Sets a higher-fidelity
smooth transition of
shallow wave shape

and water with

Ocean Qualty

Seul.ﬂeltn!:l 00
BouDynanicuScde:I 1.0

transparency near
the shore.

Distance at which to fade-out
a shoreline/underwater
microtexture.

Faden-uutmnl 00 meters of sea level

¥ Enable Wakes
Wakes
¥ Show Wake Spray
Wake Length: 100m
..—J.*
Prop Wash Culing Dist: 10000 m
 ——— |

Debug Options.

Controls the distance from eyepoint
at which VRSG stops rendering a
vessel’s propeller wash.

Startup Parameters | AtachOptions | Viewpoits | Graphics | Envionment | Preferences Scenanics |
Oceans | Shadows | VR Options | About |
¥ Ensble 30 Oceans| L Enables legacy water
Ocean Options at the surrounding
Beaufort Scale Sea State: 3.0 [Show Gosan Somy Ocean Color nominal geoid height.
| —— 7 Use Advanced Degt Biss — Only if “enable 3D

Oceans is unchecked.

Turns on 3D vessel wake
waves.

e Sea Level sets the MSL height of the ocean surface in meters.

e Boat Dynamics Scale controls the buoyancy or realistic motion of vessels, using simple
boat dynamics. The smaller the value, the greater the dampening of the motion.

e Fade Microtexture Within controls the distance at which to fade-out a
shoreline/underwater microtexture as the eyepoint approaches sea level.

e Show Ocean Spray renders spray particles from breaking waves in choppy sea

conditions.

Bow wake: wakes and wake spray options turned on.

Stern wake: wakes and wake spray options turned on.

e Use Advanced Depth Bias calculates where a vessel is in relation to the ocean; by default
it is turned on. Unselect the checkbox to turn off this feature when using narrow fields of

Chapter 2 Exploring the VRSG System 2-31

view, like those used by UAV sensors. Turning off the feature applies a much larger
depth bias, thus avoiding potential z-fighting or other visual artifacts.

o Enable Wakes toggles rendering 3D ship wake waves, including bow wave (optionally
with spray), stern wave, and prop wash. When this option is enabled, you can also set
whether to render the wake spray particle effect and the length of the wakes from 50 to
600 meters.

e Prop Culling Distance controls the distance from the eyepoint at which VRSG stops
rendering a given vessel’s engine propeller wash. (Can affect VRSG performance.)

e Ocean Color modifies the color of the ocean. Click the ocean color patch, and when the
Windows color palette appears, select a color and click OK. (Note the default ocean color
appears as black in the color palette, but does not color the water black.) The color you
choose is mixed with the default ocean color; it does not completely replace the ocean
color. VRSG will retain this color modification across sessions until the next time the
ocean color is changed or a settings file is loaded that overrides the ocean color. (Ocean
color is saved as part of VRSG’s settings file.)

Ocean scene using a custom ocean color.

Note: To change the wind direction to affect the direction of wave motion, press the W key on
the keyboard. Each key press rotates the wind direction clockwise a cardinal/intercardinal
point.

See the chapter “Configuring Models and Events” for customizing an entity’s behavior on the
ocean surface with ModelMap.ini commands.

Note for using VRSG with BSI MACE: In addition to supporting VRSG’s 3D ocean sea states,
MACE has its own physics-based hydrodynamic model which can be used to depict physics-
based real-time rendering of vessel behavior. In order to achieve this effect, VRSG transmits
to MACE several water elevation points around each vessel entity such that the height and
slope of the waves can be used by MACE to generate the resulting realistic vessel
movements. In addition to supporting movements of surface vessels, MACE supports the
surfacing and submerging of submarines and the wave-jumping of speed boats.

2-32 MVRsimulation VRSG User’s Guide

Controlling the display of shadows

Clouds, and static and dynamic models can cast shadows in the VRSG scene. All models
(dynamic vehicles and characters, and static culture) can cast realistic shadows onto terrain,
water, and everything around them, including self-shadowing. The shadow options are
available on the Shadows tab.

Controls the & VRSG v7 Dashboard
display intensity of e . : —
had. th Starup Parameters] Attach Options | Viewpoints | Graphics | Environment | Preferences | Scenarios | Oceans |
shaaows cast by —— | Shadows l VR Options | Sensor | About] Varjo | Varjo Chroma Key |
clouds on the
ground. Object Shadows Cloud Shadows
Disabled J— Darkest Disabled —— ﬁ Darkest

Controls the display

ofvhadows cast by L+ [+ Show planar vehicle shadows on terrain
all ObjeCtS in the [+ Show static culture shadows on terrain
scene -- dynamic

ground entities T~ [v Show dynamic objectto-object shadows

(vehicles and
characters), cultural
features, and object-

on-object shadows. Shadow Quality

2 Enhance quality when
FoV is narower than

[~ Enable moon-shadows at night

50 degrees

Click this checkbox
and enter a narrow
FOV angle threshold
below which dynamic
shadow enhancement
will take effect.

Turn off/on the object or cloud shadow feature with the corresponding slider. Using the
checkboxes for shadows of dynamic ground entities (vehicles and characters), cultural
features, and object-on-object shadows you can tune performance and retain only the shadows
important for the realism of your simulation.

Enabling shadows for clouds, and static or dynamic models instructs VRSG to render a
shadow based on the sun position (or moon position, if “Enable moon shadows at night” is
selected).

e Use the Cloud Shadows slider to disable or control how much volumetric clouds block
directional light. (Set the volumetric cloud layer on the Graphics tab.) When you drag the
slider all the way to the right, the shadows cast by the cloud layer completely hide object
shadows.

o Use the Object Shadows slider to disable or control the intensity (darkness) of the type of
cast shadow.

o Click the checkbox of the type of object shadow to display or hide. All types are selected
by default except for “Enable moon shadows at night”. (The latter option depends on
object-on-object shadows.) To refine performance improvement you can turn off a type
of shadow.

VRSG has the ability to improve the appearance of dynamic cast shadows when viewing the
scene through a narrow field-of-view (FOV), such as those typically used for UAV sensors. A

Chapter 2 Exploring the VRSG System 2-33

narrow FOV induces high magnification and greater standoff distances, which can cause
shadows to become washed out or to disappear entirely. Click the Shadow Quality checkbox
to direct VRSG to render dynamic shadows at a higher resolution, for FOV angles below a
given threshold. (You can find the FOV in use on the Dashboard's Graphics tab as described
earlier.)

Although cast shadows significantly increase the realism of a scenario, bear in mind that
rendering shadows doubles the demand on system resources for the clouds or models casting
the shadows. For content-rich scenes that are dense with hundreds of culture models, you can
minimize the performance impact of object shadows on the scene by controlling the display
of rendered shadows. For example, if frame rate or refresh rate drops when you fly over a
dense culture area, consider turning off dynamic object-on-object shadows, as these shadows
are less discernable in flight simulation and turning them off will likely improve performance.

Setting client views for multi-channel synchronization

See the chapter “Running VRSG with Multi-Channel Synchronization” for information about
setting the controls in the Client Views tab when you want to create a multi-channel stealth
system not controlled by a simulation host. VRSG MultiChannel can coordinate multiple
VRSG systems as a single synchronized multi-channel system.

Using VRSG with VR system controllers

You can use VRSG with the HTC VIVE/VIVE Pro, VIVE Tracker, Samsung Odyssey+, HP
Reverb, Valve Index, Varjo VR-2 and Varjo VR-2 Pro virtual reality systems, and Varjo XR-
1 and XR-3 mixed-reality systems. You control various settings for most devices in the VR
Options tab.

By default, VRSG assumes the VR system is in seated tracking mode. To use the VR system
in standing mode, select the Standing Mode checkbox.

You can instruct VRSG to display the VR motion controllers in the scene by selecting Show
Controllers, and then choosing to show the controllers onscreen either as controller models or
as hands. Options on the tab also enable you to display a VIVE tracker, optionally display it
as a weapon model from the model libraries, and set its scale and offset.

e The Performance options direct VRSG to render the scene in a single pass (rather than
the default two passes — one for each eye) and to choose and specify details about
foveated rendering.

o The OpenVR Rendering Options instruct VRSG to render the left eye only (“Single
Eye”) on a display (rather than rendering the scene of both eyes in a split screen manner)
in cases where the OTW view in the HMD is also being rendering externally. Another
option renders the base station, which can be useful for orienting yourself/the HMD in
relation to actual space.

o The Reference Frame Calibrate option calculates the difference between the reference
frames of Windows Mixed Reality VR headsets and the Vive tracker and transforms the
result in order to use them together.

2-34 MVRsimulation VRSG User’s Guide

Select Standing
Mode to override

VRSG's default
seated tracking T~

mode.

Select Show
Controllers, and
then choose to show
the wands onscreen
as wand models or
to depict them as a
set of hand models.

Renders the
scene in a single
pass (rather than
the default two
passes — one for
each eyepiece).

& VRSG v7 Dashboard

Shadows

Headset Options

/ [+ Show Controllers

(@ Show Wands
(" Show Hands

Hands 1 -
Performance

/ Single Pass
[~ Foveated Rendering

VR Options

Vive Tracker Options
[v Show Tracker
@ Show Vive Model

Tracker ID

Startup Farameters] Attach Options | Viewpoinls | Graphics \ Environment | Preferences | Scenarios

About |

LHR-44728669 |

A

(" ShowModel [weapon-M9

X Offset (0.000
Y Offset [0.000

Zofset [0000

OpenVR Rendering Oplions

[VIVE Single Eye
[VIVE Render Base Station

Controller Offset..

Referenc? Frame Calibrate.,

meters
metars

meters

/

¥ Appearance

Scale

Oceans |

Record Video |

Calculates the difference between reference frames of
Windows Mixed Reality VR headsets and Vive tracker.

Use of a Varjo device with VRSG requires a plugin DLL, which is installed in the
\VRSG\Plugins\HMD directory. The Varjo DLL adds two Varjo-specific tabs to the
Dashboards, which you would use with a Varjo device instead of this VR Options tab.

For more information about using VRSG with a VR system, see the chapter “Using VRSG
with VR Systems, Trackers, and Simulated Military Devices.”

See the section “Starting VRSG from the command-line” later in this chapter for command-
line options to have VRSG start immediately ready for use with a VR controller.

Setting display mode, coordinate system, and other
preferences

On the Preferences tab, you specify information about the resolution and coordinate system to

use for the VRSG virtual world display, the manner and format in which screen captures are
saved, and various controller options.

Chapter 2 Exploring the VRSG System 2-35

The gain sensitivity of
the controller. A value
of 1 is minimum gain,
10 results in a highly

The gain of rotations made
by the controller. A value of
1 is the minimym gain.

The display mode of the
visualization window of the
virtual world: desktop cover, or
resizable window.

Select the coordinate system
for VRSG to display on screen
in real-time.

sensitive controller.

Prevents you from
positioning the
eyepoint below the
terrain level. By
default, this option
is not selected.

Overrides rotating
geometry with
flipbook animation.——_|

Draws a “fire line” ____
from the entity/shooter
to the target and draws
a bounding sphere
around the target.

The sensitivity (in
seconds) at which to
render the motion of
an entity, minimizes

@& VRSG v7 Dashpoard

Translation Rotation

Special
amp Eyepoint

|l — 1 Display Fire Lines

JPEG A

the jitter effect of
rendering updates.

[~ Display HUD

Rotor Animation

Shadows | VR Options | Sensor | About | Record Video]
Startup Parametes | Attach Options Viewpoints] Graphics || Environment Preferences Scenanos | Oceans]
Controller Gain| Travel Mode Coordinate Display Display Mode
i A (@ Free Fly |G90detic _‘lj |D95k‘t0p Cover _:_j
- B v|? (" Ground Hug

[~ Ground Clamp Elevation

[~ Ground Clamp Qrientation

Smoothing — F———— 050 [GroundClamp Detonations
Screen Captures
Dizk File - Path 1'RS|muI;mon"-_\u'RSG"-_Sﬂapsho'.s Browse... '

File Name Prefix (optional)

|snap-

More Options...

Display mode

Use the Display Mode options to control how VRSG presents the 3D real-time scene.

e Sizeable Window displays the 3D scene in a visualization window with Windows borders
that you can reposition or resize.

e Desktop Cover displays the 3D scene across the entire monitor’s display without borders.

VRSG’s window will be created on the selected monitor and display adapter selected on the
Startup Parameters tab under the Output Device menu. If a sizeable window is selected, the
initial size of the window will be 2/3rds of the monitor. If Desktop Cover is selected, the
window will be sized to cover the full selected display.

While running in Desktop Cover mode, you are able to access the VRSG Dashboard by
pressing the ESC key. You are also at liberty to Alt-Tab to access other applications without
disrupting VRSG’s rendering. For best rendering performance however, the VRSG window
should be the top-most visible application, with the Dashboard hidden.

You may use the F2 key to toggle between a sizeable window and Desktop Cover without the

need to restart VRSG.

The mouse cursor is normally hidden in the VRSG window to provide an unobstructed scene
into the virtual environment. The cursor becomes visible upon detecting motion of the mouse
and will disappear after the mouse has been idle for 5 seconds.

2-36 MVRsimulation VRSG User’s Guide

Option to save a

screen capture to
the Clipboard or
to a file.

File formats in
which VRSG
can save screen
captures.

In addition to these options, VRSG can be started in a fixed, borderless window, which is
useful in cases where the VRSG visualization is used within a simulation application that has
other onscreen controls. See the section “Running VRSG from the command-line” later in
this chapter for information about this fixed-window option and other startup settings.

Fire lines

The Display Fire Lines option draws a “fire line” from the entity/shooter to the target, and
draws a bounding sphere around the target. The line moves with the entity. When this option
is selected, the fire lines effect is displayed in the scene for the duration specified on the More
Options dialog box.

Smoothing entity rendering updates

To minimize the jitter effect of rendering updates, the Smoothing slider controls the
sensitivity at which to render the motion of an entity, that is, how long it takes for an entity to
achieve a PDU's indicated position and orientation from the time of receipt. If smoothing
disabled, the position and orientation in the PDU is used immediately in the frame the PDU is
received. For DIS entities, zero smoothing is usually not desirable, as discrete jumps and
changes in orientation can occur, due to variable latency and dead reckoning thresholds used
by the senders. The slider’s smoothing units are seconds; the first step on the slider is 0.1
second. This means that when a PDU is received, a new velocity vector and angle rate will be
computed to achieve the intended position and orientation in 0.1 seconds from where the
entity is currently positioned/oriented. By using the slider, you can explore the tradeoff
between smoothness and latency in achieving the PDU ground truth.

Screen captures

You can save screen captures you take in VRSG (by pressing the “C” key on the keyboard) to
the Clipboard or to a file in a specified directory path. The example below shows screen
captures set to be saved in JPEG format to a file in the default \Snapshots directory. The other
formats in which you can save screen captures are shown:

Screen Caplures

—[DiskFile ¥]| Path [Rsimulation\VRSG\Snapshots Browse..

JPEG - File Name Prefix (optional) snap-

[Windows BMP

To save a screen capture to a file, in the top drop-down list, select Disk File and then select
the file format in which the screen capture should be saved. Screen captures can be saved to
the default \MVRsimulation\VRSG\Snapshots directory or to a different specified directory.
Browse for the directory path in which the capture should be saved, and optionally specify a
prefix for the screen capture’s filename. Using either the default filename prefix “snap” or a
specified prefix, VRSG appends sequential numbers to the names of screen capture image
files as they are taken. In this case, the first one would be named snap000.jpg, snap001.jpg,
snap002.jpg, and so on. More about taking screen captures in VRSG is discussed later in this
chapter, in the section “Taking screen captures of the rendered scene.”

Chapter 2 Exploring the VRSG System 2-37

Displays smoke
plumes rising
from entities that
have been
destroyed.

Forces the "gear up"”
switch state on a
moving aircraft
entity to retract the
undercarriage or
landing gear, spin
the propellers, and
50 on.

Entity rendering preferences
Click the More Options button to specify additional options affecting entity filtering and

rendering of fire lines.

More Preferences
Entity Filtaring
[Ignore entities further than

[Don't draw entiies further than

.

metars

’T meters

[~ Force smoke plumes on destroyed entities

— [v Force landing gesr up on moving air vehicles

[~ Foree dust clouds on moving ground domain enfities

. Other Col
Specifies the colors Z/ o h

to use for fire lines,
if the Display Fire
Lines checkbox is
selected on the
Preferences tab.

Shaw Designatar FOUs Mear IR only in MNWG mode ﬂ
Fire Lines
Friendlly Colar - Line Width |2
Opposing Color Z
=i Timeout [100 —— |
|; P J o,

Specifies fire line width in
meters.

Specifies the duration in seconds
— that fire lines will remain
displayed in the VRSG window.

o The Entity Filtering settings control aspects of rendering entities in a VRSG scene.

e “Ignore entities further than (range in meters)” instructs VRSG to ignore entities further
than some range from VRSG's current eyepoint location. PDUs referring to entities
further than the specified range from the current VRSG eyepoint will be discarded,
treated as if they did not exist. The entities beyond the range will not be visible or
available for attachment until they come within the given range.

e “Don't draw entities further than (range in meters)” instructs VRSG to not draw entities
that are located further than the given range from VRSG's current eyepoint location. In
contrast with the option that precedes it, this option means that the entities beyond the
range will be allowed into the system and will be available for attachment; they will
merely not be rendered if they are further than the given range.

e “Force dust clouds on moving ground domain entities” displays dust cloud behind
moving ground vehicles.

e “Force smoke plumes on destroyed entities” displays smoke plumes rising from entities
that have been destroyed.

e “Force landing gear up on moving air vehicles” forces the "gear up" switch state on a
moving aircraft entity to retract the undercarriage or landing gear, spin the propellers, and
so on. This option is useful for direct control over raising and lowering the landing gear

during an entity’s takeoff and landing.

e “Show Designator PDU” displays the designating PDU, in JTAC mode while First
Person Simulator (FPS) is running. (For more information about FPS and JTAC mode,
see the chapter “Using 3D Characters in VRSG.”)

e The Fire Lines settings control the color and width used for the line and sphere of fire
lines. These settings are in effect when the Display Fire Lines checkbox on the

2-38

MVRsimulation VRSG User’s Guide

Preferences tab is selected. To change these colors click a color field and select another
color. You can also change the width (in meters) of the fire line.

When you display entity information on screen (by pressing the F12 key on the keyboard) the
entity information for friendly and opposing entities will display in the corresponding colors
set in this dialog box. (If the entity has no designation as friendly or opposing, the
information about it is displayed in the third “Other” color.)

Setting sensor-view mode properties

On the Sensor tab, you specify characteristics of the VRSG sensor mode display, such as the
amount of noise or blur, the level of intensity of the terrain or vehicles, and whether to display
simulated A/C banding. The Sensor tab is displayed in the Dashboard on/y when the Enable
Sensor Modes checkbox is selected on the Startup Parameters tab at the start of a VRSG
session. You should select the Enable Sensor Modes option only if you need sensor modes in
your VRSG session. When this option is not selected, VRSG loads faster and consumes fewer
system resources.

The post-processing effects are:

Noise - Adjusts the amount of artificial noise of the scene in all sensor modes.
Focus - Adjusts the intensity of optical focus (blur) of the scene in all sensor modes.
Level - Adjusts the brightness of the scene in all sensor modes.

Gain - Adjusts the contrast of the scene in all sensor modes.

Digital Zoom — Performs a pixel magnification to zoom the image.

Motion Blur - Adjusts the simulated blurred or smeared appearance of objects along the
direction of relative motion.

Heat Refraction - Adjusts the simulated heat haze appearance of a scene when it is viewed
through a layer of heated air (produced from conditions such as jet fuel exhaust).

The A/C Banding option displays the scrolling horizontal stripe that simulates the banding
produced by power supplies that have frequencies dissimilar to the vertical retrace period of
the monitor. When you select this option, also select the sensor view on which you want the
banding to appear.

The sensor modes drop-down list enables you to choose Electro-Optic (EO), White Hot,
Black Hot, or Night Vision Goggles (NVG) sensor modes, or a fusion of EO with White Hot
or Black Hot.

The IR Rendering effects control the ratio at which to blend/fuse two sensor modes, specify a
physics-based or notional radiance profile, and control whether the white hot or black hot
scenes are displayed in green or in black and white and whether to use automatic gain control.

The Configuration option, available as part of VRSG’s physics-based IR, enables you to
select an IR configuration file, or radiance profile, that was created by hand for notional
sensor simulation or with VRSG’s IR Setup utility for physics-based IR simulation.

Chapter 2 Exploring the VRSG System 2-39

IR configuration
file for physics-
based IR or
notional sensor
simulation.

Simulates heat
shimmer.

Sensor mode
options, including
two sensor fusion
options.

& VRSG v7 Dashboard

Starup Parameters | Attach Options | Viewpoints | Graphics | Environment Preferences ! Scenarios Oceans Shadows |

[~ Display IR Green

VR Options Sensor | About Record Video |
Post-Processing Effects IR Rendering
Noise I Configuration:
! Selectfiles with a .vir extension for TSC ReallR
Rtisied physics-based madel
Level J ... Selectfiles with a_json extension for MVRsimulation
notional madel
Gain _}\
Hiaiin
Digital Zoom | [Haiinjson =
Motion Blur J, [¥ Automatic Gain Control (AGC)
!
il |

— HealRefraction

[~ AJC Banding Visual

The fusion blend ratio, if Fused EO/IR
White Hot or Black Hot sensor mode
is selected.

The color used to depict
IR scenes.

The IR Setup utility, described in the chapter “Working with Sensor-View Modes and
Physics-Based IR,” enables you to configure your runtime IR sensor simulation based on a
given set of sensor wavelength limits, and material and environment values. The resulting
JSON configuration file (.json) is editable in Notepad or any ASCI editor for making
adjustments. A site using a library of terrain tiles of different geographic regions will likely
have multiple IR configuration files, or even multiple IR configuration files for terrain of one
geographic area based on different environmental settings. (VRSG’s physics-based IR
capability is available in the US domestic release of VRSG with an unlock code from
MVRsimulation, and to international customers with ITAR approval.)

The Automatic Gain Control option automatically selects the radiance minimum and
maximum range to which the display dynamic range is mapped; based on the selected IR
configuration file.

The Display IR Green option displays the White Hot and Black Hot and fusion modes in
green.

Use the Fusion Blend slider to adjust the ratio at which to blend either of the two fused sensor
mode options.

For more information about sensor post-processing effects, IR rendering options, and physics-
based IR simulation, see the chapter “Working with Sensor-View Modes and Physics-Based
IR.” Sensor characteristics can also be controlled programmatically as described in the
appendix “CIGI Version 4.0 Support.”

2-40 MVRsimulation VRSG User’s Guide

Displaying version information

The About tab of the VRSG Dashboard displays which version of VRSG is running and the
license ID number. This tab also contains the maximum number of viewports associated with

this VRSG license.

When you run VRSG on a network, this tab also lists the exercise ID, and site, host and entity

information, as shown in this example:

Maximum number & VRSG v7 Dashboard

of viewports
allowed for this
VRSG license.

Starlup Parameters | Aftach Options |
VR Options

Virtual Reality Scene Generator (V] 0.
Build Date: Tuesday August 15. 2023

Click to manage DOMESTIC Version

your VRSG license
and renew software —_
maintenance.

1

 Authentication Summary...

Exercise ID, and/
site, host, and
entity information
of the current
VRSG session.

Portions of this software include Triton{tm) technology, which is

Viewpoints | Graphics | Environment | Preferences
About

. 1
Scenarios |

Oceans | Shadows |

Record Video |

LicenselD-A: 3988 21cf
Days Remaining for License: 137
Maximum # of Viewports. 4
RADAR enabled

DIS Version: 4
Exercise ID: 1
Entity ID: 1-2-129

Copyright ® 2023 MVRsimulation Inc.
MVRsimulation, the MVRsimulation logo. and VRSG (Virual Reality Scene Generator) are registered
trademarks, and First Person Simulator, and the phrase 'geospecific simulation with game quality graphics'

are trademarks of MVRsimulation Inc.

MVRsimulation's round-earth terrain format based on US Patent 7,425,952

Software, LLC

www.myrsimulation.com

pyngt

and is propretary to Sundog

suppon@myrsimulation.com

Click the Authentication Summary button to access the Authentication Summary for the
VRSG license. You use the Authentication Summary dialog box to enter the MVRsimulation-
supplied unlock code associated with your dongle when you first use VRSG after installing it,
renew product maintenance, and so on. See the MVRsimulation Product Installation Guide

for more information.
VRSG 7 - Authentication Maintenance X
There ae 3 days remamning on pour

temporary VRSE 7 kcence

Please send License Info to beente@mvisivulation com
1o request a permanent unlock. code.

™ Do not thow this message again untl icente expires

Copy License Info to Cipboard

Wour License |D: |48083 22527

Todsy it Frday October 02, 2021
License expires Monday Dctober 11, 2021
Maintenance sipires Monday October 11, 2021
Masimum # of Viewports: 1 [defaull]
Uniock Code
¢Paste unlock code heres

Note: Before updating your license, pou wil be
acked to confim the Software License Agreement

Contrue

Chapter 2 Exploring the VRSG System 2-41

Starting VRSG from the command line

Instead of starting VRSG from the Dashboard, you can start it from the Windows command
line and use one or more options to set up the VRSG session automatically. Launching VRSG
this way is useful in situations where the computers driving VRSG are booted up and
automatically logged in to a user account, and need to be able to start up VRSG without
intervention. This approach is often used in simulators with multiple VRSG channels.

Auto-start

Use the -autostart command-line option to start a VRSG visualization session. Doing so is
similar to clicking the Start VRSG button on the Dashboard. Starting VRSG this way is
useful if you do not need to modify the search path.

For example:

Run C:\MVRsimulation\VRSG\Bin\Vrsg7.exe —-autostart

This command line option starts VRSG, immediately opens the visualization window, and
loads terrain tiles from the search path specified on the Startup Parameters tab.

Use a specified settings file

If you want VRSG to load a previously-saved settings file, use the -settings option with a
specified file, as shown in this example:

Run C:\MVRsimulation\VRSG\Bin\Vrsg7.exe -autostart
-settings=YUMAsettings.json
Suppress joystick detection

To have VRSG ignore the detection of a joystick upon startup, use the -ignoreJoystick
option. This option is useful if you are running VRSG on the same machine as another
application that needs control of the joystick.

Run C:\MVRsimulation\VRSG\Bin\Vrsg7.exe -ignoredJoystick

If you use VRSG with BattleSpace Simulations’ MACE, the —ignoreJoystick option is needed
when MACE and VRSG are running on the same computer, and you just want MACE to see
the joystick.

Start VRSG with specified delay

To start VRSG with a delay of a specified number of seconds, use the -delay= command-
line option. For example:

Run C:\MVRsimulation\VRSG\Bin\Vrsg7.exe -delay=30

This example instructs VRSG to wait for 30 seconds before launching. This delay gives the
system time to power up the display, detect video settings, and so on, and is useful for
launching several VRSG channels at once.

You can place such an instruction within a shortcut as well:

2-42 MVRsimulation VRSG User’s Guide

F& Vrsgl.exe - Shortcut Properties s
Saeurity Details Previous Versions
General Sharteut Compatibiliy
(2 23 Vrsg? exe - Shercut
0

Targettype: Application

Targetlocation: Bin

Target CAMVRsimulation VRS G\Bin|Vreg7 exe -delay=30

Startin CAMVRsimulation\VRSG\Bin
Shortcut key: Mone

Run: Mormal window o

Comment

Open File Location Change leon Advanced...

Start VRSG in a customized visualization window

In the VRSG auto-startup command, you can have the visualization window launch with
specific dimensions, location on the desktop, and optionally borderless. Such setups can be
helpful in cases where VRSG is used with another application that contains other displays or
simulated controls displayed on the desktop and you want to control the exact position where
the VRSG virtual world will be displayed.

To specify the initial position and dimensions of VRSG's visualization window, use the
-windowRect command-line option in the auto-startup command, with the following
syntax:

-windowRect=x,y,width, height

Provide the position and dimensions in pixels, relative to the upper-left corner of the desktop.
These dimensions include any window title bar, borders, and resize corners. If you need to
achieve a specific size of the visualization window itself, the dimensions you give will need
to be slightly larger to account for window borders and the title bar. This window can be
resized and moved anywhere on the desktop.

To specify a non-resizable visualization window, use the -noresize command-line option.
This option creates a window with a title bar that can be used to drag the window to a new
location, but it will not have any resize corners, thus will not be resizable.

To create a fixed visualization window without any title bar, resize corners, or borders, use
the -borderless option. The resulting window will not be movable or resizable. By
coupling this option with -windowRect, you can define a specific window size needed for
video recording purposes. Since the resulting window lacks any borders, the dimensions
specified in -windowRect will be the exact dimensions of the resulting visualization
window.

Chapter 2 Exploring the VRSG System 2-43

Using -windowRect, it is possible to create a rendering window that is larger than the
monitor can accommodate. This is useful if VRSG is being used to stream video from
multiple viewports, and the sum of the viewport dimensions are larger than the monitor.

Automatically load scenarios

To have VRSG start playing a scenario immediately when it finishes loading the terrain in
visualization mode, specify the -scenario option with a specified file, using the following
syntax:

Run C:\MVRsimulation\VRSG\Bin\Vrsg7.exe -autostart

-scenario="C:\MVRsimulation\VRSG\Terrain\terrain-name\Scenarios
\scenario-name"

For example:

C:\MVRsimulation\VRSG\Bin\Vrsg7.exe" -
settings="C:\MVRsimulation\VRSG\Terrain\Somalia\Kismayo\
Scenarios\AlShabaabCharcoall\Kismayo-Vrsg-Settings.json" -
scenario="AlShabaabCharcoall" -autostart

This example starts the Al Shabaab Charcoal scenario that is delivered with VRSG as soon as
VRSG loads the Kismayo terrain. The specified scenario-name only requires quotation
marks if the path to the scenario contains spaces.

Disabling pop-up messages

Use the -nodialogs option to suppress VRSG from displaying pop-up messages that require
a yes/no response, such as “Do you want to see the error log?”” Keep in mind that this option
will also suppress the reporting of errors that might need your attention. You could create a
separate testing VRSG shortcut without the -nodialogs option, to see whether there are
any issues that you need to address.

Controlling use of a VR or other tracking system

When VRSG detects a VR system or other head-mounted display (HMD) or tracking system,
it normally prompts you to confirm whether to use the tracker for your VRSG session.
(VRSG does not issue a confirmation message for Varjo devices.) To suppress this prompt
and have VRSG always use the tracker, add the -noTrackerPrompt command-line option.

To prevent VRSG from scanning for a tracking system, use the -ignoreTracker command-
line argument.

Often tracking sensors are mounted in head-mounted displays (HMDs) or simulated military
equipment in a reverse direction. This mounting direction results in tracker azimuth and pitch
angles changing in the opposite direction as intended. To account for reverse-mounted
trackers, use the -reverseTracker command-line argument.

To force VRSG to display the crosshair reticle with simulated military equipment such as
binoculars or laser range finder devices, use the -crosshair command-line option. This
option displays the same crosshair reticle in the VRSG scene as pressing the X key activates
(as described later in this chapter). Pressing the X key can still be used to toggle the crosshair
display.

2-44 MVRsimulation VRSG User’s Guide

Use the -viveMode=ViveStandingMode option to use an HTC VIVE VR system in
standing mode. By default VRSG assumes the VIVE’s room-scale mode.

CIGI command-line option

Use the -cigi quiet option to suppress VRSG from sending CIGI packets to the CIGI
host. This option is useful in a multichannel environment where the host should receive CIGI
responses from a single channel. See the appendix “CIGI Version 4.0 Support” for
information about using VRSG with CIGI.

Displaying onscreen information

As you navigate in the virtual world, you can obtain onscreen information: Help,
performance, system memory and texture memory statistics, the name of a model, texture, or
terrain tile under the cursor, and a compass rose.

VRSG onscreen Help
The Help text appears as an overlay on the display in the visualization window.

To display Help do one of the following while you are rendering a database in the
visualization window:

Press the F1 key on the keyboard to obtain a quick reference to the key sequence associated
with each function.

Press the F button on the SpaceMouse Pro to obtain a quick reference to the function
associated with each button.

As noted in the Help text, to switch to the VRSG Dashboard, press the Esc key on your
keyboard.

The examples below and on the next page show Help text for the buttons of the 6DOF
controller in use and the VRSG keyboard functions.

SpaceMouse Pro Control Menu
ESC : Return to GUI
: Attach to next entity (w/Shift for previous)

Button 1

Button 2: Attach next preferred entity (w/shift for previous)

Button 3: Add/Remove entity to/from preferred list

Button 4: Attach/pDetach to/from network entity or cultural
feature located in exact center of screen

Button R: Change attach mode

Button F: Display help text

Chapter 2 Exploring the VRSG System 2-45

Obtain onscreen help by pressing Button Y on the Logitech F310 gamepad, as shown:

Lt - —Mﬁ. - i & ; v

Press Button Y on

the Logitech F310
gamepad to display
help about the FPS
functions mapped to
the gamepad
controls.
Keyboard Functions (press F1 again for more options)
Keyboard ESC ! Return to GUI E : Elevation query
Left : Move Teft : Toggle wireframe view
F1 Help text i g
p shift-Left : Rotate left L : Execute Laser Range
for keyboard Right : Move right M : scale dynamic models
na\igathnn Shift-Right : Rotate right u : Cycle UAV coord. system
d acti up : Move forward X : Enable Laser Range

ana dactions, shift-up Pitch up F7 : Boresight tracker
which spans Down : Move backward Fi2 : Display dynamic entity ID
two screens. shift-Down : Pitch down CTRL-F12 : Display static culture ID

i Screen capture
I)feSS Flto : Change visual spectrum
dlsplay the : Performance statistics
first screen ! save viewpoint

: le saved viewpoints
of keyboard L 7%
jﬂ 4 : Toggle windowed/fullscreen
help, press
F1 again to
display the Keyboard Functions (press F1l again to hide)
second D : Detach from the model currently attached to

: Turn onfoff MGRS map grid overlay

screen. : Frame rate statistics

: Save cultural feature placement edits to the .clt Tile
: Turn on/off compass rose
Y : Enable/disable nudge mode for reduced controller gain
- : Turn onfoeff ocean
Fl1 : Turn onfoff Fixed Wing Simulator mode

Shift-D : Enable/disable static model dragging
Shift-X : Delete a static model you are attached to
CTRL-UP : Increase the size of a static model

CTRL-DOWN : Decrease the size of a static model
Shift-Click: Display tile ID or model info under cursor
Shift-L : Display tile ID or model info under crosshair
CTRL-P : Palise or unpause scenario playback

Displaying performance statistics about the scene

To obtain performance statistics about the rendered scene, press the "H" key on the keyboard.
All displayed times are measured in milliseconds, and frame rates in frames per second.

2-46 MVRsimulation VRSG User’s Guide

Current, Average, and Minimum Frame are frame-rate statistics of the last one hundred
frames.

Pre-Draw Time is time spent during a frame before VRSG begins drawing the scene.
Draw Time is the time VRSG spends drawing a scene.
Missed Frames is the number of missed frames since last "H" display or for the session.

Mission Functions is the compute time to determine collision detection or other mission-
function activities.

Multiple IGControls indicates whether the host is running at a faster rate than VRSG. This
could mean that VRSG is missing frames or that the host is sending multiple IGControls per
frame.

Absent IGControls indicates whether the host is not keeping up with VRSG’s frame rate.
Wait Time is the time VRSG spends waiting for vertical retrace.

IG Control Received On Scan Line is a measure of synchronization, VRSG reports the scan
line upon which the CIGI IG Control is received from the host. This scan line should be a
very small number (less than 50) and fairly stable. If the number increases or decreases, it
suggests the host is not synced properly to VRSG. When VRSG sends the Start-of-Frame
message during vertical retrace, the host should have the next frame's IGControl precomputed
and ready to transmit upon receipt of the Start-of-Frame message.

Keyboard “H”
display of a scene’s
performance
statistics.

Displaying system and texture memory statistics

You can obtain system and texture memory statistics about the visualized scene by pressing
the "T" key on the keyboard. The statistics appear in the upper-left corner of the visualization
window as shown in the following example:

Chapter 2 Exploring the VRSG System 2-47

draw calls, 56348980 ctriangles

Displaying a compass rose

You can display a compass rose (pointing to magnetic north) in the VRSG visualization
window, by pressing the “R” key on the keyboard:

The compass rose, displaying cardinal/intercardinal points, appears in the upper-right corner
of the visualization window as shown in the following example:

Press “R” again to remove the compass rose from the VRSG visualization window.

2-48 MVRsimulation VRSG User’s Guide

Displaying an MGRS grid
You can display a military grid reference system (MGRS) grid overlay on the terrain. Press
the “G” key on the keyboard to display the MGRS grid as shown.

Press the “G” key again to remove the MGRS grid overlay.

You can print the scene with the MGRS grid overlay, by taking a VRSG screen capture of the
scene (described later in this chapter) and printing the resulting image.

Playing VRSG scenarios

In VRSG you can add scenarios to DIS exercises that contain pattern-of-life activities. These
scenarios contain static culture and PDU logs you create in VRSG Scenario Editor (which is
installed with VRSG). You can record the movements of characters and vehicles, build up
culture content, and play back the resulting scenario in either a network exercise or a
standalone VRSG session. See the MVRsimulation Scenario Editor User’s Guide for more
information about creating scenarios.

In VRSG you can play the demo scenarios that are delivered with VRSG and any other
scenarios created in VRSG Scenario Editor.

To play a VRSG scenario locally on your machine:
1. Launch VRSG.

2. Ensure the terrain directory and the directory containing the scenario and its associated
files are listed in VRSG’s search path on the Startup Parameters tab, as described earlier.
Also, be sure to select Enable Sensor Modes if that option is needed for the scenario. (It
is needed to properly watch MVRsimulation’s demo scenarios.)

3. Once the database is loaded in the visualization window, click the Scenario tab.

Chapter 2 Exploring the VRSG System 2-49

4. The Available Scenarios list on the Scenarios tab shows all the scenarios that VRSG can

find for the terrain specified in the search path.

& VRSG v7 Dashboard
Shadows | VR Options | Sensar] About Record Video]
Starup Paramelers | Attach Options | Viewpoints | Graphics | Environmenl | Preferences '3cenanos Oceans |
Lists all the Available Scenarios
; - [AiShabasbhareaa
scenarios that exist iI
I Ki FlyOwe
fora given database Koot
loaded into VRSG Launch Scenario Editor...
Controls for
playing, pausing
and restarting the | _Pray |
scenario. :
Pr ogress slider, / CAMVRsimulation\WRSG\Terraim\Somalia\Kismayo\Scenarios\AlShabaabCharcoal
which you can
move to change
the current time
of the scenario.
Path of the scenario currently Starts VRSG Scenario Editor. Useful for
selected or playing. iterating on developing and playing back
a scenario.
5. To play a scenario, click the one of interest to select it, and then click Play.
6. VRSG loads the scenario you selected and begins playing it.

7. Click Pause to pause the scenario, and click Play to resume playing it. Click Stop to cease
the playback. When VRSG reaches the end of the scenario, it starts playing the scenario
again, and will play it repeatedly until you click the Stop button.

8. Temporarily increase the scenario’s playback speed 10x by holding down the plus-sign
(+) on the keypad or Shift and the plus sign (+) on the keyboard. Increase the playback
speed to 100x by also holding down the Control key; Control and plus-sign (+) on the
keypad or Shift and Control and the plus sign (+) on the keyboard.

9. Temporarily decrease the playback speed by10x by pressing the minus sign/hyphen (-) on
either the keypad or the keyboard.

10. You can stop (and resume) the automatic switching of the eyepoint to the scenario’s
built-in scripted viewpoints by pressing Ctrl-D. This way you can move around freely in
VRSG while the scenario plays.

Playing MVRsimulation’s demo scenarios

The terrain that is installed with VRSG includes associated demo scenarios that were created
in VRSG Scenario Editor. VRSG is delivered with several 3D terrain datasets that have
scenarios. You can play these demo scenarios immediately to see some of VRSG features and
Scenario Editor in action. VRSG is set up to initially load the terrain in
\MVRsimulation\VRSG\Terrain\Syria\Hajin, which means the scenario in the \Scenarios
subdirectory will be available. You can play it as described above, or simply launch it from

2-50 MVRsimulation VRSG User’s Guide

the VRSG Demos shortcuts located in the MVRsimulation folder on the Windows Start
menu.

Note: Turn on the Enable Sensor Modes option on the Dashboard’s Startup Parameters tab to
properly experience the scenario’s sensor view.

Creating and playing real-time VRSG recordings

With VRSG's real-time recording feature, you can record video of VRSG-generated scenes in
H.264 or H.265 format. With a current high-end game-level Nvidia card such as the GeForce
RTX 4090 or equivalent workstation card such as the RTX 6000 Ada, you can record HD
resolution videos at 60 frames-per-second (fps) for either network streaming or file-based
recorded output. VRSG can encode UAV Key-Length-Value (KLV) metadata into the video
stream to stimulate tactical systems that can exploit that data.

H.264 / H.265 output can be recorded at nearly any resolution you set the VRSG visualization
window to be, at 30 or 60 Hz, and can be directed to a local directory on your machine, or
streamed to multiple network addresses using the User Datagram Protocol (UDP), Real Time
Streaming Protocol (RTSP), or Real Time Transport Protocol (RTP). The MPEG-2 transport
stream has an H.264 or H.265 elementary video stream multiplexed within. (Nofe that
streaming video via RTSP requires that the option be set before you launch the VRSG
visualization window.)

To view VRSG’s video feed on the remote end, several viewer options are available,
including MVRsimulation’s own video player. The MVRsimulation Video Player is a simple,
flexible, low-latency player which offers a borderless mode, so it can be embedded easily into
cockpit displays. The player also can decode and display encoded KLV metadata. It accepts
H.264 /H.265 output created with the UDP MPEG-2 transport stream. The player is
distributed with VRSG, with its own installation (Install-MVRsimulation-VideoPlayer-
YYYYDDMM .exe), which is located on the distribution media in the \Utilities directory.

The H.264 / H.265 recording plugin supports the latest generation of Nvidia's GPUs which
have a hardware H.264 video encoding chip called NVENC. The benefit of this dedicated
H.264 or H.265 chip is that most of the processing power of the GPU is available for other
tasks.

The ability to record VRSG rendered scenes in real-time is controlled by a plugin (DLL). To
activate the plugin, move the file H264.dll from the
\MVRsimulation\VRSG\Plugins\VideoRecording subdirectory so that it resides directly in the
\Plugins directory, as in: \MVRsimulation\VRSG\Plugins\H264.dll. After you do so, the
Record Video tab will appear on the Dashboard the next time you start VRSG.

Note: If your system is not running VRSG on Windows 10 or is not using a newer Nvidia
graphics card (or is using a different graphics card altogether), VRSG will not load the
H264.dll plugin. Systems running VRSG on Windows 7 or with a different graphics card can
use the MPEG.dII instead, which is located in the same \Plugins directory. The MPEG.dII will
record the VRSG scene as generally described in this section, but will not encode UAV
telemetry, and the recording quality will not be HD.

For recording purposes, you can start VRSG in the sizable or desktop cover window mode.
However, do not change the window mode or manually resize the VRSG window after you
start recording; making either change will cause the recording to stop.

Chapter 2 Exploring the VRSG System 2-51

Specifies whether
the recording
should be saved
to an .mpA4 file or
streamed over a
UDP or RTSP
network.

Presets that handle
the tradeoff
between video
latency and quality.

Options for encoding —

UAV telemetry.

Starts recording the
scene immediately
upon launching
VRSG.

Toggles display of
VRSG informational
messages in the
visualization window
while the session is
being recorded.

When the file H264.dll is present in the \Plugins directory, the Dashboard displays the Record
Video tab as shown in this next example.

To record in Desktop Cover mode without having to access the Dashboard to start and stop
the recording, press the F3 key on the keyboard to toggle recording on and off.

If you need the VRSG visualization window to be a specific fixed size on the desktop, set the
size by adding the following parameters to the VRSG shortcut in the Windows Start menu:

windowRect=x,vy,Width, Height

The fixed window size can also be set with the registry variables WindowWidth and
WindowHeight, as described in the appendix “VRSG Registry Variables.”

& VRSG v7 Dashboard

Startup Parameters | Attach Options Viewpoints | Graphics] Environment Preferences | Scenarios | Oceans
Shadows] VR Options i Sensor | About Record Video
Mode |MF'EGZ Transport stream over UDP ﬂ

Save Video In [E\Videos

Port |1234 IP Address | 192 . 168 . 255 More... RTSP Server Port |8554

Data Rate (Mbits/sec) [5. KLV Metadata ST 0601 :J
/W Autostart Recording [+ Show On-Screen Messages [Endble Transmitter PDUs

Press F3 to toggle reg6rding in full-screen mode.

Record

1
Stop More Options

\

Enables the transmission of DIS Option to add Displays more options for
Transmitter PDUs, which advertise the multiple recipient recording simulated UAV video
system as a video source. IP addresses. stream with KLV metadata.

You can have VRSG start recording the scene as soon as it is launched and the terrain is
loaded in the visualization window. Select the Autostart Recording checkbox to turn on this
feature. Note that to stop the recording, you must unselect Autostart Recording before you
click the Stop button.

To suppress the VRSG messages that appear in the visualization window during the
recording/streaming session, unselect Show On-Screen Messages.

Recording H.264 or H.265 output
Before you record a VRSG session for H.264 or H.265 output:

e Determine the video dimensions you need. The output resolution of the recording is the
resolution of the VRSG visualization window; the default dimensions are 640 x 480

2-52 MVRsimulation VRSG User’s Guide

pixels (the default dimensions of VRSG’s visualization window in “sizable” windowed
mode). To specify alternate video dimensions, you can either set your Windows desktop
to the intended size, and start VRSG in Desktop Cover mode, or beforehand, change the
dimensions of VRSG’s visualization window in windowed mode by creating two
DWORD registry variables named window Width and windowHeight as described in the
appendix “VRSG Registry Variables.” (Note that the display mode setting on the
Preferences tab does not affect the video dimensions.) Do not manually resize the VRSG
visualization window once it has been launched.

e Ifyou will live stream the video from VRSG, determine whether you need to stream it
via RTSP rather than a UDP network stream. VRSG can stream video output to a
network address via UDP, RTSP, or RTP, but UDP is the default. If you intend to live
stream via an RTSP network stream instead, you must select the RTSP option on the
Record Video tab before you launch the VRSG visualization window. The RTSP option
will not be available to select once the VRSG visualization window is launched.

To record a VRSG session after the above two considerations have been set:
1. On the Record Video tab, select the following options as appropriate:

e To write the recorded output to a file, select the Write to File option and specify a
path and filename for the .mpg output file.

e To stream recorded output to a UDP, RTSP, or RTP network address:
Select MPEG2 Transport Stream Over UDP, Real Time Streaming Protocol (RTSP)
Server, or RTP Over UDP, and enter the receiving IP address and port. To transmit to

multiple receiving IP addresses, click More and enter the additional IP addresses and
ports. (VRSG expects all DIS traffic to be on a single port.)

Multicast Setup *

Erter address and dick Add

| 23 Q
Enter each IP /

address and port
combination and |
then click Add. '

ok | Cancel

2. Specify the following options as appropriate:

e Choose H.264 or H.265 codec. VRSG can now encode the video stream into the
H.265/MPEG-H format.

e Optionally, change the default data rate. Higher data rates produce higher quality
video, but at the expense of higher bandwidth usage or larger files on disk.

e When you run VRSG in a UAV camera simulation mode, VRSG can infer the
required telemetry during a recording. VRSG supports a compliant subset of the
NATO standard STANAG 4609, ST 0601.1, ST 0601.9, and ST 0601.17 KLV
metadata and MISB security metadata standard 0104.5. To enable the encoding of
UAV telemetry, select one of the using KLV encoding metadata options: ST 0601.1,

Chapter 2 Exploring the VRSG System 2-53

ST 0601.9, ST 0601.17, or MISB 0104.5. When one of these options is selected,
VRSG generates an MPEG-2 transport stream with two embedded streams: one for
video and the other for the selected KLV metadata. If the KLV option None is
selected, VRSG records an elementary video stream only, broken into 1024 byte
packets.

e Optionally, turn off the display of VRSG informational messages that appear on the
screen during recording.

e Optionally, change the Quality setting handle the trade-off between performance and
quality:

Quality |Default Quality Settings v |

Low Latency Default
High Performance
High Quality

Low Latency High Quality

Low Latency High Performanc

e Optionally, select Enable Transmitter PDU to have VRSG send a PDU to announce
the video source to available channels that can tune in to the streaming video. Click
Properties to enter values for the frequency, bandwidth and signal stretch in the
Transmitter PDU Properties dialog box.

e Click Advanced to display the Advanced Options dialog box where you can specify
more options for recording simulated UAV camera view output with KLV metadata:

e Specify the recorded frame rate as 30 or 60 Hz.

e Optionally, change the default Group of Pictures (GOP) size parameter to optimize
the encoding for your output.

e Optionally, unselect B-Frame generation to minimize decoder latency in a network
streaming application. B frames enable higher quality video for a given data rate, but
incur some latency. B frames should be used when recording to a file, where latency
is not a concern.

e Optionally, change the threshold value for the number of hops routers will forward
your multicast data packet from VRSG.

e Optionally, change the defaults for Static Metadata encoding options as they pertain
to your use of the KLV data set. Any meaningful information you enter in the free
text fields will be propagated to the KLV stream.

With the terrain loaded in the VRSG visualization window, click Record to start
recording the rendered scene. (Or, if you are running VRSG in full-screen mode and do
not have the Dashboard displayed, press the F3 key on the keyboard.) During the
recording session, this tab shows output information of the session. Anything in the
VRSG scene that is written to the frame buffer will be recorded (including any overlays).
For information about using more than one viewport, see the section “Using multiple
viewports™ later in this chapter. If VRSG is running in full-screen mode, you will not be
able to access the Record Video tab (or the Record button on that tab) to initiate
recording. Press the F3 key on the keyboard to initiate recording while VRSG is in full-

2-54 MVRsimulation VRSG User’s Guide

screen mode. VRSG will sound a beep to indicate recording has begun. Press F3 again to
stop recording. VRSG will emit a lower-octave beep to indicate recording has ceased.

Enables higher quality video; The default Group of Pictures (GOP)
unselect for live streaming to size parameter to optimize the
avoid incurred latency. encoding for your output.
The recording’s \
frame rate, either More Options x
30 or 60 Hz \ B Wb Ot : Threshold value for
L FomeRate [0 j copsas =] 15 rmetove = 32 mfmber of hops rou.ters
e 5 : will forward a multicast
LitaC 0.0 -
Viewport [al +] [Enable 8-Frames data packet.
RTSF Stream TGP.264
Static Metadata
Episade Humber | 00001 Cofing Methad [150-3166 Two Letter = |
Tail Number | 001 Classifying Country |//US
F ld Am Designation | VRSG Release Tnatructions ,C-\Llsi
ree text fields .
which ca;{ be call sign [Top un Object Country Cocing Method [150-7186 Twa Letier = | A "leap second" offset in
populated with Tmage Saurce | VRSG V7 Object Courtry [USich generated timestamps in
data that is Image Coordinate System |Geodetic WGSBS - Latitude Cffset IU— the KLV stream.
meaningful for wap Datum [DTED Longtude Offset [0
your KLV stream. Classification | UNCLASSIFIED/f :" Timestamp Offsat from UTC ’0— saconds

4. When you finish recording the scene, click Stop.

During the recording session, the Record Video tab displays output information. Anything in
the VRSG scene that is written to the frame buffer will be recorded.

& VRSG v7 Dashboard

Stariup Parameters i Attach Options Viewpoints I Graphics] Environment 1 Preferences | Scenarios f Oceans]

Shadows i VR Options I Sensor | About Record Video
Mnde|rv’F'.=G? Transpor stream lo file ;I
Save Video In |E Wideos U
File name prefi (optional) |VHSG Quality |Default Quality Setings ~| Codec |[H.264 (AVC) > I
Port [1234 IPAddress | 192 . 168 1 255 Mare RTSP Server Port [B554
Data Rate (Mbits/sec) (5.0 KLV Metadata |S_ 06019 j
Area where output
information is—— | [AutostartRecording [+ Show On-Screen Messages [~ Enable Transmitter PDUs ropertio:

displayed during S L

. Bytes writen: 5 Megabyles
recordlng. \Avg bitrate: 8.89 Megabits per second
Elapsed time: 00:00:05

Record Stop hore Opticns

Chapter 2 Exploring the VRSG System 2-55

For recording simulated UAV sensor output, note that not all MPEG viewers are capable of
using KLV metadata. MVRsimulation’s Video Player can decode and display KLV metadata
and offers an alternative for customer applications that cannot use VLC for VRSG
streaming/playback.

VRSG's generated H.264 / .265 video stream with KLV metadata is fully compliant with the
latest standards recommended by MISB. The video output's compliance was tested with
NGA's Community Motion Imagery Test Tool (CMITT), which validates video and metadata
conformance.

Working with recorded file output

To output the recording to a file, you specify an output directory and optionally a file name
prefix. Using the specified prefix, VRSG will append sequential numbers to the names of
H.264 / H.265 clips as they are generated.

You can play back the recorded .mpg file, edit it, or convert it to another format.

Examples of recorded scenarios are available on the MVRsimulation website at:
www.mvrsimulation.com.

Several viewer options are available for video playback, including MVRsimulation’s own
video player, which is delivered with VRSG and described later in this section. The
MVRsimulation Video Player is lean and flexible and has lower latency than commercially
available players such as VLC. The player offers a borderless mode, so it can be embedded
easily into cockpit displays, and it can decode and display KLV metadata. If your simulation
can use the MPEG2 transport stream, this video player should meet your needs.

Other MPEG viewers, available free of charge, include:

e QuickTime — download is available from www.apple.com/quicktime/download/.
e VLC —download is available from www.videolan.org/.

e Windows Media Player — available on most Windows systems.

For recording UAV camera output, note that the three MPEG viewers listed above are not
capable of using the KLV metadata.

MVRsimulation’s video player and the GOTS GV 3.0 viewer and metadata editor (the latter
available from www.pargovernment.com/gv3.0) are viewers that can decode VRSG's MPEG-
2 stream and embedded KLV metadata.

If your recorded playback contains irregular coloration and imagery, check whether your
desktop is set to 16-bit color. If it is, change the setting to 32-bit color.

Note: As of VRSG 7, the H.264 plugin will return the encoded KLV metadata via the plugin
API, enabling a subsequent executing plugin the ability to access the encoded KLV bitstream.
For more information, see the Plugins.h API header file on the MVRsimulation Download
Server, in the /Software/Interfaces directory.

Working with live network streams

Instead of writing an H.264/H.265 stream to a disk file, you can choose to output the
recording to a live network stream using UDP or RTSP. If you select MPEG2Transport
Stream Over UDP or RTP Over UDP, enter the UDP port and IP address to transmit the video
stream, for example, the UDP port and IP address of the machine running the MVRsimulation

2-56 MVRsimulation VRSG User’s Guide

video player or GV viewer. The IP address can be a peer endpoint, broadcast, or multicast
address.

As described above, for UAV camera simulation you can optionally select a KLV Metadata
option to have VRSG generate 1316-byte UDP packets, which consist of 7 188-byte MPEG
Transport Stream packets. Among the viewers capable of viewing live network streams, only
MVRsimulation’s video player and GV are capable of decoding and displaying the UAV
telemetry encoded in the metadata.

& VRSG v7 Dashboard

Starup Parameters | Anach Options | Viewpoints] Graphics | Environment | Preferences Scenarios | Oceans | Shadows]

VR Options | About Record Video
Mode |MPEG2 Transport stream over UDP _:J
to receive the e
File name prefix (optional) [Kimsayo-Charcoal0210. Quality [High Quality] codec [H2ga(ave)]

recording as a i

transmitted video

stream. Port |1234 T IP Address |) 192 !63 T 1 255) Mare.., | RTSP Server Port |":‘_—
Data Rate (Mbits/sec) [50 KLV Metadsta [None (Video Steam Only) v |
MNone (Video Stream Only)
Generates an / MISE 1045
MPEG2 transport [Autostart Recording [+ Show On-Screen Messages |STO0601.1 Q
. ST 06019

stream with two ST 0601.17
mbedded streams: TR T T T A ST 3 —

one for video and

another for KLV
Record Stop More Options...

metadata.

You can direct the streaming output to one of these three viewers:

e MVRsimulation’s video player — delivered with VRSG and located in
\MVRsimulation\Video Player (for streaming VRSG video in H.264 or H.265 format).

e VLC - shareware available from www.videolan.org/.

e GV 3.0 — The GOTS package GV 3.0 viewer and metadata editor available from
www.pargovernment.com/gv3.0.

Windows Media Player is not capable of playing the H.264 in a transport stream over UDP.

There is no perfect setting for a recording, especially in high definition and high frame rate
situations. The balance between data rate (Mbits/sec) and recording preferences is up to you.
Using an NVidia RTX 3080 video card and a data rate of 25 Mbits/sec with the H.264/265
codec yields a high-quality result. Reducing the data rate will reduce the fidelity of the
recording. Increasing the data rate will eventually overload the processor and GPU, resulting
in a choppy and stuttering video recording.

Post-processing, while not necessary, is also user dependent. Stretching and shrinking the
picture may give unwanted results upon rendering in VRSG. MVRsimulation recommends
you keep the recording in the native resolution. If a higher resolution than the native
alternative is needed, it is best to increase the resolution in VRSG, and re-record the exercise
or activity.

Chapter 2 Exploring the VRSG System 2-57

Streaming output via RTSP

If you intend to live stream via an RTSP network stream instead, you must select the RTSP
option and, optionally the RTSP Server Port on the Record Video tab before you launch the
VRSG visualization window. The RTSP Server options will not be available once the VRSG
visualization window is launched.

& VRSG v7 Dashboard

Starup Parameters | Aftach Optons | Viewpoints] Graphics | Environment] Preferences i Scenanos | DOceans
Shadows VR Options | Sensor | About Record Video
Mode EReaI- Time Streaming Protocol (RTSP) Server ﬂ

MPEG2 Transpon stream over UDP

Save Video In |[MPEG2 Transport stream to file

Real-Time Streaming
Real-Time Protocol (RTP) over UDP

File name prefix (optional)]'\':-F-'-I Quality }DefauhOualiry?emﬁ.i.as_uj Codec |H2;(.EVC1 _Ll
Port [1234 IPAddress | 192 . 168 . 1 . 255 More.. | RTSPSewerPort [8551

DataRate (Mbitsfsec) [50 KLV Metadata [ST 0601.1 ~]

[Autostart Recording [+ Show On-Screen Messages [~ Enable Transmitter PDUs

Press F3 1o loggle recording in fullscreen mode.

Record Stop More Options..

The RTSP Server Port is the loopback address to use if the video player (such as
MVRsimulation’s video player or VLC) is located on the same machine as VRSG. Specify
the RTSP Server Port in the form of rtsp://127.0.0.1:8554/TGP.264, as shown in the VLC
example as shown in the example in the section “Using VLC.” If the video player is located
on another machine, use the IP address of VRSG on the remote machine. The VRSG
visualization window must be launched and rendering before making the connection to the
remote machine.

Note: The inclusion of KLV metadata is not available with the RTSP option.

Streaming output via RTP

You can stream video via RTP over UDP. RTP is the DMO standard for tactical video
streaming. RTP can output KLV metadata streaming through a supported viewer like
MVRsimulation’s video player.

2-58 MVRsimulation VRSG User’s Guide

Select the
checkbox, click
the Properties
button, and in
the Transmitter

Properties — |

dialog box, enter
the frequency,
bandwidth and
signal strength.

Emitting transmitter PDUs
VRSG’s streaming feature can emit transmitter PDUSs, as shown next.

1. Select the Enable Transmitter PDUs checkbox and click Properties.

2. When the Transmitter PDU Properties dialog box appears, enter the frequency,
bandwidth and signal strength information for other channels to tune into the video
stream, and click OK.

& VRSG v7 Dashboard

Stanup Parameters | Attach Options | Viewpoints | Graphics | E | Preferences 5 | Oceans
Shadows | VR Options | Sensor | About Record Video
Mode [MPEG2 Transport stream over UDP -]
Save Video In |: Vide
File name prefix {optional) RS Cuality [law Latency High Pedormar + Codec |H.264 (AVC) -

Pon |1234 o Address 192 168 1 255 More. RTSP Sarver Por £

Data Rate (Mbits/sec) [50 KLV Metadata [MISB 1045 -
[T Autostan Recording [+ Show On-Screen Messages [+ Enable !T DOy b
| Transmitter PDU Properties X
Press F3 o toggle res -screan mode.
Record Stop |

Frequency |4000.0000 Megahertz
Bandwidth | 2.0000 Megahertz

Power |1.00 Decibel Milliwatts

New VRSG 7 option to select CAF
DMO Transmitter PDU compliance
level. | | e

[+ Include port number (pre CAF DMO MP17 compatibility)

Cancel

Streaming multiple viewports

You can stream multiple viewports from within a single MVRsimulation channel over the
network. The video recording feature is viewport-aware, which means you can select the
viewport to encode on the More Options dialog box (accessed from the Record Video tab). To
set this up, you will need to install multiple H.264 DLLs, by simply making copies of the
DLL file. For example, make a copy of the file \Plugins\H264.dll in the same directory and
name it H264 2.dll. Doing so creates two Record Video tabs on the Dashboard, and each can
record a different viewport. (For information about using more than one viewport, see the
section “Using multiple viewports™ later in this chapter.)

Using MVRsimulation’s video player

MVRsimulation’s video player is distributed with VRSG, with its own installer (Install-
MVRsimulation-VideoPlayer-YYYYDDMM.exe), which is located on the distribution media
in the \Utilities directory.

To install MVRsimulation’s video player, run Install-MVRsimulation-VideoPlayer-
YYYYDDMM .exe on the system on which you intend to run the video player. By default the
video player will be installed in \MVRsimulation\Video Player.

To launch the MVRsimulation Video Player:

Chapter 2 Exploring the VRSG System 2-59

Either choose MVRsimulation Video Player from the Windows Start menu or double-
click the Video Player.exe file.

The player begins by playing a pre-recorded test stream (test.mpg), until it detects a video
on the network. (You can move the test.mpg out of the directory if you do not want the
Video Player to play it when it starts.)

& MVRsimutation Streaming Video Player (GeForce GTX 1080) u] s

File View About.,

RATE
13cC
AUTO OFEF

ACFT
Qs 37813

85791
MSL 6562

WHT

AUTO-IC -

AUTO-BK

11S Qs 36162
85554

SLR 2239M

GDR 1668M

&, : FOR 1855M

\ARM 3 ' ELV 1658F

Prerecorded video, test. mpg, which plays by default (unless you move it out of the video player
directory) until the player detects a video streaming on the network.

Choose File > Options. On the Options Dialog box select the UDP port to listen to for
video from your VRSG system. Ensure this UDP port matches the UDP port you set on
the Record Video tab on the VRSG Dashboard. When the video player detects a video
stream, it resizes its window to match the dimensions of the video. You can override the
window size as described next, if you want the video to appear to come from an
underlying display, such as a simulated aircraft cockpit multi-function display (MFD).

2-60 MVRsimulation VRSG User’s Guide

4. On the Options dialog box, turn on settings to control the size, position, appearance, and
priority of the video window:

Options x|

Metwork

Click to activate the

e TR

D post st msich the LD pot hetied o Flacord inh of e VASS dimension ﬁelds, where you
E:l\.‘_?;oosl:‘ Oa "":31 e sim2 10 select "WIPF G2 Tennapnd shesen (s A

D" v ecordiog enter the intended

Vidam wnddow 318, pasion. and prioy dimensions ofl‘he video

streaming window.

[Borderess window

™ Farce window size and postion

Tip: Prives the O ki lo scoess this dislog boxwithou e menu bar

i OF J Cencel

e Always on top — displays the video window above all other applications.

e Borderless window — displays the video window without borders, resize corners, or a
menu bar.

e Force window size and position — the video window will use the provided screen-
space rectangle to describe the position and size of the window. If the forced window
size does not match the video dimensions, the window will be padded with black
borders, either horizontally or vertically, and scaled to retain the proper aspect ratio
of the video.

5. Choose View > KLV Metadata to display the STANAG 0601.1, 0601.9, or 0601.17
formatted metadata embedded in the video stream.

KLV Metadata X
Alrcraft Data
Latitucla M3539168 Eeanng 0.0 degrees
Longitude MA1636 495 Deprassion 462 degrees
Decoded KLV metadata, 5 e g
. . . Headi 2369 Fitch =00 o
which will be displayed S s 5 S
. i E o
lftheKLVmemdata | Altitude MEL &715.7 feet Rall 174 BOrEes
: :) i)]
OpflOn is selected on the Alttude WGESH BE14.1 feet Field OfView 280 degrees
Record Video tab of the Target Data
VRSG Dashboard.
Lattude MN3I53948 Wiidlth 5504 mefers
Longitde MA1637 445 SlantRenge 19652 meters
Altitude MIL M274.5 faat
Tip: Fress the v key to access this dislog boxwithout the menu bar,

While the video is streaming, you can use the following keyboard shortcuts to display the
dialog boxes without having to access the menu bar on the video window:

e ESC or F2 - to toggle between borderless and border (with menu bar) modes.
e O —to display the Options dialog box.
eV —todisplay the KLV metadata dialog box.

Chapter 2 Exploring the VRSG System 2-61

When the streaming session is finished, choose File > Exit to close the video player.

Using the GOTS GV 3.0 viewer
The GOTS package GV 3.0 viewer and metadata editor (available from

www.pargovernment.com/gv3.0) can decode VRSG's MPEG stream and embedded KLV
metadata.

VRSG must be recording to the network before you attempt to open the stream in GV. GV
will quickly time out if it cannot see a stream on the network. If GV is not decoding video
correctly you might need to unselect its “Enable hardware rendering” preference setting.

The following image is a GV screen capture with the metadata fields extracted from the
transport stream:

Using VLC

VLC requires a network URL syntax for entering the protocol and port upon which it will
receive video. For the UDP URL, enter a string such as “udp://@:1234” where 1234 is the
default port for video transmission on the Record Video tab.

2-62 MVRsimulation VRSG User’s Guide

Satup Paameters
Sowatcs |

Attach Ogtizns
Shadewy

Envionment | Preferences |
Fiwcond Video

Graphics
Moot

Mewgants |
Seracr

Mode [Feal Time Sreaming Protocal (RTSP) Server

|

sty [Figh Petommance

u Piddess [127 0 0 1 Mom | ATSF Server Pun [F552

KLV Metadata [None (den Smam Only) |

' Show O Serven Messaged

When using VLC to view the streaming H.264 video, there might some degree of latency
between when the VRSG screen is updated and when VLC is updated, which is normal for
H.264/265 output. VLC has a large streaming buffer by default. To avoid latency issues,
consider using MVRsimulation’s video player instead. If you must use VLC, try the
following to minimize the latency:

On the Record Video tab, click the Advanced button, and then on the Advanced Options
dialog box unselect the Enable B-Frames checkbox. B frames enable higher quality video
for a given data rate, but incur additional latency. B frames should be used when
recording to a file, where latency is not a concern.

On the Graphics tab, click the More Options button, and then on the More Graphics
Options dialog box, ensure the Vertical Retrace Sync option is selected.

Use the latest version of VLC.

In VLC, choose File > Open Network Stream, and then click the Network tab of the Open
Media dialog box. Click the Show More Options checkbox to display the Caching option.
Test this option to see what works to minimize the delay on your network. Latency can
be reduced to fractions of a second running on the same machine via loopback.

Recording and playing back a PDU log of network traffic

VRSG is delivered with a utility, PlayBack, which records and plays back traffic on the
network via a PDU log. This utility is installed in

Chapter 2 Exploring the VRSG System 2-63

\MVRsimulation\Common\Util\Playback.exe. The PlayBack utility is useful for recording
and playing back full DIS network exercises.

@ MVRsimulation PlayBack X

Click to specify a

filename for the i

PDU log (default w

extension is __——| Flay & log file: Open...

.pdulog).

Click to locate the

PDU log to play [[

back, and optionally e

set the playback SendinlFeddess | 192 . 1B . 51 258

options.

[Looping [~ FastFonward
The port setting(s) must match the port(s) you use for DIS traffic.

The flight path of a
Wasp Block 111
entity which was
recorded and played

back in VRSG.

While VRSG is running, this PDU recorder can record all network traffic and write the PDUs
to a log file (vrsg.pdulog). To play back what was recorded, start VRSG, and then start
PlayBack.exe, browse for the PDU log of interest and click Play.

In cases where you need to record both a DIS feed and CIGI to fully recreate your scenario,
enter the ports of both protocols.

Two other methods of playing a PDU log are also available in ways that bypass the interface.

e Double-click a PDU log listed in the Windows File Explorer. The PDU log will play
immediately in Playback.exe, broadcasting on the same port and address last used.

¢ Invoke PlayBack.exe from the command line instead of accessing the interface. In this
case, the PDU log will play immediately and will broadcast on the same port and address
last used.

2-64 MVRsimulation VRSG User’s Guide

These methods can be useful for playing back not only PDU logs of recorded DIS network
exercises, but scenarios created in VRSG Scenario Editor, if you want to play back such a
scenario without accessing the scenario from the VRSG Dashboard.

Note: When you play back a scenario’s PDU log (vrsg.pdulog) that was exported from VRSG
Scenario Editor, only the scripted entities will be sent over DIS. Be sure to add the exported
vrsg.clt file to VRSG’s search path so that the culture appears in the scene.

Taking screen captures of the rendered scene

You can capture a still image of the 3D scene displayed in the visualization window (in any
display mode) and save it to the Windows Clipboard or to an image file in one of several
popular formats. You can then use the image in any application that accepts image files. All
formats generate full color RGB images, except for NITF, which generates 8-bit per pixel
grayscale images.

To take a screen capture in VRSG:

1. Confirm the intended Screen Capture settings on the Preference tab, as described earlier
in this chapter in the section, “Setting preferences.”

2. In the visualization window, navigate to the area of which you want to capture a still
image. Decide whether you want a full-screen image or smaller windowed mode image.
The capture will have the dimensions of the displayed VRSG scene. (In the case of a
multichannel system, the capture will be of one channel.)

3. Press the “C” key on the keyboard. VRSG displays a message in the window indicating it
has successfully created the screen capture. A still image of the area is copied to either
the Windows Clipboard or to a file in a specified directory, depending on the Screen
Capture settings on the Preference tab.

4. If the image is saved to the Clipboard after the capture, paste the image from the
Clipboard into any application that accepts images, such as Microsoft PowerPoint or
Word, or an image editing application.

5. Ifthe image is saved to a file after the capture, they will be saved to the default
\MVRsimulation\VRSG\Snapshots directory, unless a different directory is specified in
the Screen Capture settings on the Preference tab.

6. Ifthe image is saved to a file, VRSG also saves the viewpoint at the time of capture as
well as the settings that were in effect at the time of the capture, both as metadata. If the
image is saved in JPG format, VRSG will embed the viewpoint and settings metadata
directly into the JPG image. Essentially, the image is saved as a visual viewpoint. You
can simply drag the captured image from the Windows Explorer to the VRSG
visualization window to restore the viewpoint of the captured scene. As you drag the
image to the VRSG scene, you are prompted to restore all Dashboard settings (in addition
to the viewpoint) that were in effect in the scene at the time the screen capture was taken.

7. If the image is saved in any other supported image format (BMP, NITF 2.1, PGM, PNG,
or DDS), the corresponding viewpoint an settings metadata files are written to the same
directory as the image file, using the same filename, with the extensions .viewpoint and
.json, as shown in the following example:

Chapter 2 Exploring the VRSG System 2-65

\MVRsimulation\VRSG\Snapshots\snap-kismayo-004.bmp
\MVRsimulation\VRSG\Snapshots\snap-kismayo-004.viewpoint

\MVRsimulation\VRSG\Snapshots\snap-kismayo-004.json

You can return to the exact location on the terrain depicted in the saved screen capture by
dragging the saved .JPG image file, or the viewpoint file of an image saved in another format,
from the Windows File Explorer and dropping it on the VRSG visualization window. Doing
so moves the eyepoint to the location of the screen capture. Once you use this viewpoint, it
becomes persistent; this viewpoint is saved to the vrsg.viewpoint file.

Still images of a scene captured in VRSG can be important for:

e After Action Review (AAR) presentations of simulation experiments. You can place the
virtual world images in a document for an annotated presentation of a simulation
exercise.

e Shared whiteboard applications.

e Communication with MVRsimulation support staff. In certain cases, you could show a
support representative an image that illustrates a question or issue you have.

MVRsimulation uses screen captures of virtual worlds rendered in VRSG in documents such
as conference papers, marketing literature, advertisements, and product user’s guides. This
feature is also used to create the images for the MVRsimulation website.

Using the laser range finder

VRSG has a built-in laser range finder. This feature is typically invoked by simulation
applications using CIGI. However, you can use the engineering-level control from the
keyboard.

To use the laser range finder, do one of the following:

Press the left mouse button. The coordinates of the lased point under the mouse cursor are
displayed in the upper-left corner of the visualization window.

Press the letter “x” key on the keyboard, and then press the letter “1” key (that’s 1 as in “laser”
not the number 1). First, a 2D-overlay image of a crosshair is displayed. The intersection of
the vertical and horizontal crosshair is the location where the range will be determined. When
you press the keyboard “I” key, VRSG computes the linear distance from the crosshair
intersection to the first polygon intersection and returns the range in meters on the bottom of
the display.

As shown in the next example, the azimuth and elevation are shown on top of the display.
The azimuth appears first with an asterisk over the 2D AZ text indicating that the displayed
value is for the azimuth. The azimuth then is replaced by the elevation with an asterisk over
the 2D EL text. All readings are from the centroid of the initiating entity. Press the “x” key to
turn off the laser range finder. Similar to the mouse-invoked lase, the coordinates of the lased

point are displayed in the upper-left corner of the visualization window.

2-66 MVRsimulation VRSG User’s Guide

Coordinates
of the lased
point.

Saving settings for a particular terrain configuration

You can save settings specific to a particular configuration in a unique JSON settings file
(*.json). Doing so can be useful if your site uses several terrains for training, and you want an
easy way to access the settings of previous VRSG sessions. A settings file saves most the

parameters that were set in the Dashboard, such as the search paths, network and environment
settings, and preferences.

On the VRSG Dashboard, click Save Settings to save the configuration of your current VRSG
session. When the Save as dialog box appears, give the file a name and save it to
\MVRsimulation\VRSG\Settings, which is also the location of your default configuration.

& VRSG v7 Dashboard ? ®
Oceans | | Shadows | VROpions | Sensor | Mbot | RecondVideo |
Startup Parameters HtachOptions | Viewpoints | Graphics | FEnvionment | Preferences | Scenarios
eSS
» V4 Qgg RN
Output Device [0.0: NVIDIA GeForce RTX 3000 24GB Ensble Sensor Mades o s .
! = I Enable Mission Functions M/ Rsimulation
UDP Port [2000 (DIS Defauit is 3000) [™ Enable Radar
I™ Enable 3D Sound
Exercise D |1 {0for all) I™ Mutichannel Master Start VRSG I

¥ Enable Folder Pre-Scanning

i~ Input Devices

Exit

/Swe Settings... |

Load Settings...

C:5\MVRsimulation \WRSG\ Teran

| GDOF Controller: SpaceMouse Pro
| Joystick Device: Detected
| Tracker: HTC VIVE

Click to save the VRSG session Click to use a specific settings file
configuration to a settings file (,json). Jor your current VRSG session.

To use a settings file, click Load Settings and browse for a saved JSON file of interest. In this

way, you could have several settings files to use for loading terrain tiles of different regions
of the world.

Chapter 2 Exploring the VRSG System 2-67

Error logging and information reporting

VRSG creates two informational log files in the \MVRsimulation\VRSG directory:
Vrsglnfo *.txt and VrsgError *.txt. VRSG appends the filename with the name of the
machine running the session, such as Vrsginfo Austinl.txt. The files contain the following
information:

Vrsglnfo_*.txt contains information about hardware capability and what VRSG loaded in the
last session. (This information can help to identify the ModelMap.ini and cultural feature files
used in the last session.)

VrsgError.txt contains information about problems that VRSG encounters, such as textures
that are missing from the search path.

The contents of both files are refreshed for each session of VRSG.

If any errors occur while you run VRSG, VRSG asks whether you want to view the “error
log” upon exiting from the program. If you choose to view it, VRSG displays the
VrsgError.txt file in your default text editor. For example:

Failed to find texture file dirt road desert.rgb
Failed to find texture file concrete surface 1 large.rgb

If something unusual occurs in a VRSG session after you have started it in Desktop Cover
mode, and no error message appears, try restarting VRSG in Sizeable Window mode. Often
error messages are hidden when VRSG is running in Desktop Cover mode.

Note: If you are running VRSG on a system that has User Access Control (UAC) activated,
the Vrsglnfo.txt and VrsgError.txt files will not be saved or updated in the VRSG installation
directory if the \MVRsimulation\VRSG directory is located in the C:\Program Files path.
Instead the updated file will appear in the directory
C:\Users\<username>\AppData\Local\VirtualStore\Program Files\MVRsimulation\VRSG.

Using multiple viewports

A viewport is a scene rendered in a VRSG channel. Multiple viewports are multiple scenes
that are rendered from a single VRSG channel (instance). Viewports enable you to divide the
framebuffer into subset rectangles that can receive/render different scenes. Multiple viewports
is the recommended way to achieve multiple concurrent scenes on the same system.

Use of multiple viewports requires a simulation host capable of using this feature of VRSG.
Viewport limits are associated with the license for a given VRSG channel and are listed on
the Dashboard’s About tab.

Applications with multiple viewports from one VRSG instance include:
e Picture-in-picture or picture-by-picture arrangements.

e UAS simulation, where often the nose camera and the articulated sensor camera are each
given a dedicated viewport.

e VR HMD devices, which require at least two viewports (one for each eye) or four
viewports (two for each eye), depending on the manufacturer.

e Two or more projectors on a dome display; one viewport could be allocated to a skyward
scene, and the other to a denser terrain scene, as a way of achieving some load balancing.

2-68 MVRsimulation VRSG User’s Guide

e Multiple monitors of the same make and model connected with the Nvidia Surround
feature into a single logical extra wide display. VRSG sees the single-wide desktop as a
single-wide framebuffer. Viewports can be created at the monitor boundaries such that
each monitor receives a different scene. This setup is a popular use of multiple viewports.

Multiple viewports on a single VRSG channel can be overlapping or spatially separated. The
viewports can also be horizontally mirrored to support applications that demand this (such as
a rear-view mirror), or display systems whose optics impose a horizontal reversal of the
image.

Multiple viewports work best when the camera origins are on the same entity. For example
you could have one viewport allocated to a nose camera on a UAV and another one allocated
to an articulating sensor. (Using CIGI, you could attach viewports to different entities, as long
as they were geographically close.)

L T x

Note: Creating multiple viewports does not add more graphics processing power to the
system. They divide up the existing processing bandwidth across multiple scenes; the
maximum possible scene content density is reduced with multiple viewports. Note this places
significant additional demand on the system.

To use more than one viewport with a given VRSG channel, you create a Viewports.txt file
and place it directly in \MVRsimulation\VRSG\ with one entry per line for each viewport.
Each entry directs VRSG where to draw each viewport on the screen, the field of view, and
the visual spectrum.

The syntax for an entry is:

X, y, width, height, lfov, rfov, tfov, bfov, yaw, pitch, roll,
spectrum

Chapter 2 Exploring the VRSG System 2-69

The spectrum options are:
otw — out the window irwh — ir white hot
Eo — electro-optic nvg ir — white hot
irbh — ir black hot

If no spectrum option is given, the display defaults to out-the-window (otw).

For example, these entries in a Viewports.txt file render the two-viewport VRSG display
example on the previous page:

0 0 1024 768 25 25 20 20 0 0 O otw
1024 512 1024 768 25 25 20 20 75 0 0 otw

The meaning and order of the values for the entries in the Viewports.txt file, starting from the
left, are:

e The 1st pair of values are the starting position of the viewport, in pixels.
e The 2nd pair of values are the width and height of the viewport, in pixels.

e The 3rd pair of values are the left and right angles defining the perspective projection
matrix, in degrees.

o The 4th pair of values are the top and bottom angles defining the perspective projection
matrix, in degrees.

e The next values define yaw, pitch, and roll angles for the view direction of the viewport,
in degrees.

o The final value defines the spectrum type, which in this case out-the-window (otw).

Multiple viewports are supported by applications using CIGI, not using DIS-based (or legacy
MUSE) interfaces. For information about how to create multiple viewports for a CIGI
application, see the appendix “CIGI Version 4.0 Support.”

Note: Due to the increased demand on your system, if you experience performance
degradation using multiple viewports, you may have reached a point where you are asking for
more bandwidth than your system can deliver. Try turning off any resource intensive features
you do not need, such as volumetric clouds and shadows. If your scenario is totally land-
based, disable 3D oceans as well.

2-70 MVRsimulation VRSG User’s Guide

Using VRSG on multiple monitors

VRSG supports the use of multiple monitors in one system. The additional output devices
will appear as options on the Startup Parameters tab of VRSG’s Dashboard. The following
example shows the output devices of a machine with two monitors (and one graphics card):

Shadows Sensor | About
Starup Parameters | Attach Options | Viewpoints | Graphics Environment | Preferences] Scenarios

Output Device |0.0: NVIDIA GeForce GTX 2080 Ti 11GB v | [Enable SensorModes
0.0: NVIDIA GeForce GTX 2080 Ti 11GB [~ Enable Mission Functions
10.1: NVIDIA GeForce GTX 2080 Ti 11GB P
UDP Port | OIS DaTau s SUTUy | Enable Radar

The first number is the video card index and the second is monitor index. Following the name
of the video card is the amount of memory on the card.

VRSG always displays the Dashboard on the first/primary monitor. If you select another
monitor as the output device, VRSG displays the visualization window on the selected
monitor, and VRSG retains that monitor preference. You can use Desktop Cover to display
the visualization window on a second or third monitor to enable other applications to obtain
focus while VRSG is still running.

Because the visualization window on the second or third monitor has no options, you cannot
move, resize, or minimize it. By using this extended desktop mode in a training setup, an
instructor could manipulate the controls on the Dashboard displayed on one monitor without
disturbing the rendered imagery in the visualization window displayed on another monitor.
All monitors must be turned on before you start VRSG as it populates the device list with
available devices upon startup.

3D Vision Surround from Nvidia enables the expansion of VRSG onto two, three, or four
displays. In this case there is no second or third output device. VRSG views the desktop as a
single large logical monitor. If VRSG started in full-screen mode, the 3D scene will span all
monitors.

VRSG support for multiple projector displays on
arbitrary-shaped surfaces

VRSG has multiple solutions for distortion correction and edge blending for multiple-
projector displays on non-planar display surfaces, such as the curved surfaces of
hemispherical domes or cylindrical displays. VRSG is delivered with an MVRsimulation
plugin for making simple manual adjustments to correct projected imagery on a curved
surface. Also delivered are plugins for using VRSG with third-party warp/blend systems of
Scalable Display Technologies and VIOSO Projection. These plugins are installed in
\MVRsimulation\VRSG\Plugins\Displays. For more information, see the chapter “Distortion
Correction and Edge Blending.”

CHAPTER 3

Running VRSG With Synchronized
Channels

VRSG support for synchronized channels with or without a simulation host, enables a set of
multiple VRSG channels (instances or computers) coupled in such a way as to create a
multichannel image generator.

Training simulators with this kind of setup typically have multiple displays (such as domes,
monitors, VR headsets, or emulated military equipment). Each display is driven by a different
VRSG channel, and in some cases a simulation host controls all the channels to provide a
coordinated multiple display environment.
: : %ﬁ pEr

U.S. Navy Combined Arms Virtual Environment (CAVE) training dome with multiple synchronized VRSG
channels at the Expeditionary Warfare Training Group Pacific (EWTGPAC) in San Diego, CA.

Use the VRSG MultiChannel Master option on the Startup Parameters tab of the VRSG
Dashboard and the settings on the Client Views tab when you want to create a multi-channel
stealth system not controlled by a simulation host.

3-2 MVRsimulation VRSG User’s Guide

VRSG MultiChannel acts as the simulation host, controlling multiple VRSG systems as a
single synchronized multi-channel system; in this configuration. This setup is useful if you
want to have a “stealth” view, which is controlled by a 6DOF input device.

If you intend to control VRSG channels from your simulation host, for example through
CIGI, do not use VRSG MultiChannel. This chapter is intended for users who want to set up a
multi-channel stealth system using VRSG MultiChannel.

To use the VRSG in a multichannel setup without a simulation host, start VRSG and select
the Multichannel Master option on the Dashboard’s Startup Parameters tab as shown below.

Oceans | Shadows | VR Options] Sensor | About | Record Video I
Startup Parameters I Attach Options I Viewpoints I Graphics | Environment] Preferences | Scenarios I

Select this checkbox

Output Device [0.0: NVIDIA GeForce RTX 3090 24GB v | [V Enable Sensor Modes

to enable VRSG [~ Enable Mission Functions
Multichannel and __| UDP Port [3000 (DIS Defauitis 3000) [~ Enable Radar
access to the Client I™ Enable 3D Sound
Views tab on the ; i i

Exercise ID |1 (D or all) ¥ Muttichannel Master
VRSG Dashboard.

¥ Enable Folder Pre-Scanning

There are three primary configurations for which you can use VRSG’s multichannel
synchronization:

e As asingle-interface machine that communicates with client views using the same
physical network as the simulation network.

e As a multiple-interface machine acting as a bridge between the simulation network and
the private visual channel network. Each client channel has a single network interface.
This represents the typical configuration.

e As a multiple-interface machine in which the client views are also multiple-interface
machines. In this configuration, the clients are physically connected to the simulation
network and are also physically connected to the private visual channel network.

The image on the next page shows how, by using multiple VRSG channels, multiple
computers can display a panoramic view. Each computer displays a single image. The top
channel is a simulation host or a VRSG Multichannel master channel. Side by side, the
displays on the monitors create a panoramic view.

Chapter 3 Running VRSG With Synchronized Channels 3-3

Each computer produces a subset of the
total contiguous image.

How multichannel synchronization works

When VRSG is run with multiple channels, the channels are controlled by either a simulation
host (such as a flight simulator) or by VRSG MultiChannel. VRSG MultiChannel contains
the Client Views tab on the Dashboard that allows you to configure the client channels. Client
channels must be configured to specify their view attachment position, view orientation, and
field-of-view angles. When your simulation host controls VRSG channels, you do not use
VRSG MultiChannel. Instead, the CIGI host controls the channels contains the mechanisms
to specify the client channel’s attachment position, orientation, and field-of-view.

3-4 MVRsimulation VRSG User’s Guide

MVRsimulation, BSI, and IDSI's Fallon Familiarization Solution, featuring three VRSG channels.

Once you start VRSG, it can either be controlled by a master channel or operate as an
independent stealth view. Once you click the VRSG Start button on any client to launch
VRSG in visualization mode, the application becomes an independent stealth and cannot be
controlled by a simulation host or VRSG MultiChannel. When VRSG MultiChannel or your
simulation host controls a channel, that channel is started automatically by the controlling
system. You only need to launch the VRSG Dashboard, you do not click Start VRSG to
launch all of the other channels into visualization mode.

The master channel controls the client views though messages exchanged over a local area
network (LAN). This network could be the same network used for simulation traffic, but this
setup is not recommended because of the large amount of bandwidth needed for the master
channel and client views to interact. The master channel provides a means in which the
viewport coordination traffic may be isolated onto a private LAN. In a typical configuration,
the master channel has two network cards. The client views are physically connected to a
private LAN shared with the VRSG master channel. The master channel uses a second
network card to connect to the simulation LAN. In this configuration, the master channel
machine forwards simulation network messages onto the private LAN so that the client views
may also see the simulation network messages.

You could think of the master channel as a simulation host, and the VRSG systems controlled
by the master channel as the multi-channel image generator for the simulation host. The
master channel provides all the dynamics computations that drive the location and orientation
of the logical platform onto which the client views are attached. In addition, the master
channel provides the center view located at the origin of the platform. As an alternative to
using VRSG MultiChannel for controlling the client views, the client views may be

Chapter 3 Running VRSG With Synchronized Channels 3-5

controlled by any application using Common Image Generator Interface (CIGI). In this setup,
the master channel is not needed because the simulation host application (e.g. rotary-wing
aircraft simulator, M1 tank simulator) computes the dynamics for the location and orientation
of the platform onto which the client views are attached. Like the master channel computer, a
simulation host computer should have two network cards to isolate the CIGI messages from
the simulation network.

Setting up a synchronized multi-channel system

Setting up a synchronized multi-channel VRSG system includes the following tasks:

o Configuring the TCP/IP settings of the private and DIS networks.

e Assigning site/host/entity triplets to each client view and the master view.

e Adding and configuring the client views to the master channel.

e Disabling flow control on the network card and/or the network switch.

e Run 3D benchmarking tests for each client.

The rest of this chapter describes each task in detail.

For using multiple projectors on a single display surface, see the chapter "Distortion

Correction and Edge Blending with VRSG" for information about using warping/blending
plugins that are delivered with VRSG.

U.S. Navy CAVE training dome with synchronized VRSG channels at the EWTGPAC in San Diego, CA.

Setting up the network

See the Windows documentation for information about how to specify IP addresses and
network masks for the private multi-channel network and the simulation network. Make a

3-6 MVRsimulation VRSG User’s Guide

note of the network broadcast addresses for the simulation LAN and the multi-channel LAN,
because you will need these addresses to complete the system configuration.

The following diagram illustrates MVRsimulation’s recommended multi-channel simulation
network configuration. In this configuration, which has evolved as our best practice for a
dome or classroom setup, DIS and CIGI broadcast resides on a separate network (DISNET in
the diagram) from the Terrain Server where VRSG and the 3D terrain and model libraries
reside (TerrainNET).

Recommended multi-channel simulation network configuration

CAT6 Cable

DISNET
1Gb Subnet
192.168.1.1-254

DIS Switch

Rack-Mounted Machines

VRSG-1

VRSG-2

VRSG-3

VRSG-4

VRSG-5 CAT7 Cable

Trainee
TerrainNET

10Gb Subnet
192.168.2.1-254

Instructor |\&2#

Content Switch

Sim Host (DIS/CIGI) | ¢

r %

VRSG Sensor H.264 Feed "
Y=

\

Terrain Server

The centralized Terrain Server is from which all the networked VRSG simulation computers
(again, for example a multiple-projection or classroom setup) run VRSG and pull 3D content.
Although each machine must have a VRSG installed and a VRSG dongle or software license
present, the machines all run VRSG and pull 3D content from the centralized Terrain Server.

Chapter 3 Running VRSG With Synchronized Channels 3-7

This setup keeps maintenance, VRSG patches/upgrades, plugins, and 3D content refreshes
easy to manage at a single location. If the client computers have small C: drives, this setup
eliminates the need for them to store MVRsimulation’s large 3D model libraries.

The next diagram shows the recommended file setup on the Terrain Server.

Multi - IG Simulator Centralized File System

\\Server\D

\MVRsimulation Copy MVRsimulation Folder To Server
\VRSG
\8i ‘ VRSG.exe| Single Site/Sim Patch Location
in
\...
\Plugins
W\ 1G-Specific plugins control

\IG-1
\...
\IG-4
\IG-5

* We recommend mapping a local drive letter to the server’s UNC shared folder on each IG machine. The “T:" drive can be used via startup script.
* Inmost cases, it will improve overall simulation load time to load models from a local SSD drive on each IG machine.

1. Copy the MVRsimulation installation folder to the Terrain Server.

2. Map a local drive letter, such as “T”, to the Terrain Server’s shared UNC folder on each
VRSG IG machine. You can assign the local “T” drive letter to the UNC share by adding
the command line “net use T:\\terrainserver\sharename” to the VRSG IG machine’s
startup batch file.

3. Optionally, specify VRSG plugins (such as Warp3.dll and H.264.dll shown in the
diagram) to run only on certain machines. VRSG will first check for a folder named
\Plugins_hostname before checking the \Plugins folder.

Note: In most cases, it will improve overall simulation load time to load models from a local
SSD drive on each VRSG IG machine.

3-8 MVRsimulation VRSG User’s Guide

Do not turn on the
Enity State PDU

option for client

views.

Assigning addresses to clients

For each client view and the master view you must assign a unique site/host/entity triplet to
identify the view on the network. MVRsimulation recommends that you assign all client
views the same site and host numbers, but assign unique entity numbers to each view.

To assign the site, host, and entity numbers:
1. On the Startup Parameters tab, click the Advanced button.

2. Inthe More Startup Parameters dialog box, enter the site, host, and entity numbers. Then
click OK.

More Startup Parameters ? X
DIS Networking TS
Destination Address [192.16851 266 w Multicast Setup
DIS j‘ 4 Entity Timeout Period (10 (sec)

[Trust PDU Timestamps [Use High Order DRA

DIS Presence

@ None (" Stealth PDU (201) (" Entity State PDU
Kind Domain Country Cat Sub Spe Extra
|0 |0 |o |0 Io |0 |
Site Host Enitity /A
|1 |2 |1 38 rellow
UAY Ports and Address

EsuE] [5000 MUSE ‘5000 Address |192.168651266 w
Cancel

Note: The client views should not have the Entity State PDU option selected. Only the master
view, if any, should have this option selected.

Chapter 3 Running VRSG With Synchronized Channels 3-9

555th Fighter Squadron F-16 Fighting Falcon pilot, operates an AFRL F-16 Deployable Tactical Trainer
(DTT) simulator. The multi-channel synchronized view is driven by VRSG. Photo: U.S. Air Force photo by
Senior Airman Matthew Lotz/Released.

Configuring client views

You configure the client views in the Client Views tab of the VRSG Dashboard. This tab is
displayed when you select the Multichannel Master checkbox on the Dashboard’s Startup
Parameters tab.

The Client Views tab contains the controls that enable you to identify which VRSG clients
will be controlled by the master channel and specifies the relative locations and orientations
of the client views. If your simulation host will be controlling the client views, it will
configure the client views through CIGI.

The view generated by the VRSG Multichannel Master channel is set up automatically and
appears in the view list on the Client Views tab as “This Computer.” This view is typically
used as the center channel, but you can modify this default behavior by selecting “This
Computer” and making the appropriate modifications.

Select from the Address list the broadcast address of the network for the visual channels. The
default broadcast address of each network interface will appear in this list. If you are using
subnets, you must change the default broadcast accordingly.

3-10

MVRsimulation VRSG User’s Guide

& VRSG v7 Dashboard

Shadows I VR Options | Sensor I About

Address |1‘32.168 51.255 -
View Name IT"“S Computer LI Ping Clients |

Startup Parameters | Attach Options I Viewpoints I Graphics I Environment I Preferences

Record H.264

1View Defined
—View Identfication—————— ~Location (X forward. Z down) Apply
Site Host Entity X(m) Y (m) Z(m)
1 2 129 0.00000 0.00000 0.00000
I I I I I I Al Wisyy |
—Orientation (degrees)——— ~FOV (halfangles, degrees)
Az El Roll 11.25000 Delete Yiew
15.00000 15.00000
joooooo Joooooo [o.0o000
11.25000
Cancel |

Scenarios | Oceans
Client Views

Editing views

To edit a view on the Client Views tab:

1. Select from the View Name drop-down list the view you want to modify. This list
contains all configured views. When you select a view, all the editable attributes of the

view appear in the appropriate fields on the tab.

2. Optionally, change the view name, its network identification, location relative to the

center view, orientation relative to the center view, and the field-of-view.

3. Click the Apply button to have the changes take effect. (Click Cancel to discard your

changes and revert the view back to its original settings.)

Adding views

To add a new view on the Client Views tab:

1. Click the Add View button. Initially the fields on this tab contain default values.
2. Enter the appropriate values for this new view:

e Assign a name to the view in the View Name field so you may readily select it from
the list at a later time if you need to modify or delete the view. An example of a view

name would be “Far Left, -60 degrees.”

¢ In the Client Identification fields, specify the site, host, and entity numbers of the
VRSG client you are assigning to this view. On the VRSG client, the site, host, and
entity numbers are assigned in the Advanced Parameters settings of the Startup

Parameters tab.

e For Location specify the location of the eye point relative to the center view. The
center view eye point is located at (0,0,0). The location of the client view is specified
relative to the center view using the DIS Z-down entity coordinate system. In this

Chapter 3 Running VRSG With Synchronized Channels 3-11

coordinate system, the positive X-axis is forward, the positive Y-axis to the right, and
the positive Z- axis is down. Units are given in meters.

e For Orientation specify in degrees the orientation of the view relative to the center
view. Positive azimuth is clockwise rotation relative to the center view. Positive
elevation (Elev.) pitches the view upward relative to the center view.

e Specify the field-of-view (FOV) is specified as 4 potentially asymmetric positive half
angles. For example, if you want a 40 degree horizontal (full-angle) by 30 degree
vertical (full angle) FOV, you would enter 20 for the outer fields corresponding to
the left and right FOVs, and 15 for the center fields corresponding to the top and
bottom FOVs.

Removing views
To remove a view from the configuration, on the Client Views tab select the view from the
View Name drop-down list and click the Remove button.

Testing the configuration

Once you have configured all of the views, and have assigned the correct site-host-entity
numbers to the client VRSG views, you can test the configuration by clicking the Ping Clients
button.

If the configuration is successful, VRSG displays the message “Reply received from all N
clients,” where N is the number of views you have in your configuration.

If some or all clients do not respond, the message “Some or all clients failed to respond” is
displayed. If this message appears, verify the following:

e All client channels have been correctly addressed. Verify the IP address and the network
mask of all the client views. Consult your Windows documentation for more information.

o The Address field is set to the correct broadcast address of your private visual channel
network.

e All client VRSGs have the correct unique site, host, and entity designations.

Configuration scenario

The following scenario illustrates how to configure a three-channel system. Note that the IP
addresses used in the scenario are for illustration purposes only.

In this three-channel system:
e Channel 1 is the left view and has a single Ethernet card with the address 140.140.1.1.
Since this is a class B network, the broadcast address is 140.140.255.255.

e Channel 2 is the center view and has two Ethernet cards. One Ethernet card is for the
private visual channel network (140.140.255.255) and the other network card is for the
DIS network. For this example, the address 192.55.242.2 is assigned to the center

channel’s DIS interface. This is a class C network with a broadcast address
192.55.242.255. The visual channel network card is assigned the address 140.140.1.2.

e Channel 3 is the right view and has a single Ethernet card with the address of
140.140.1.3.

3-12 MVRsimulation VRSG User’s Guide

Channels 1 and 3 run the VRSG client software. In the Advanced Startup Parameters dialog
box (which you access from the Startup Parameters tab), the site/host/entity is assigned 1/1/1
to channel 1 and 1/1/3 to channel 3. Channel 2 runs VRSG’s multi-channel synchronization
support as the master channel and is assigned site/host/entity values of 1/1/2. In the Advanced
Startup Parameters dialog box, the center channel is assigned a broadcast address of
192.55.242.255, which enables it to send DIS messages onto the DIS network. On the Client
Views tab, the Address is set to 140.140.255.255 to allow channel synchronization messages
to be isolated on the private network.

Next, the views are set up on the Client Views tab. Click Add View to insert a new view into
the configuration. In the View Name field type “Left View, -35 degrees.” For location choose
the default of (0,0,0). For azimuth enter -35 degrees. Keep the elevation at 0.0. For the field-
of-view (FOV) enter 15 degrees for left and right, and 12 degrees for top and bottom. This
yields a 30-degree horizontal FOV while providing a 5-degree gap between the center view
and the left view to allow for the spacing between monitors. The vertical FOV is
commensurately smaller to account for the aspect ratio of the display (1.25 being a typical
aspect ratio). Click Apply to have the new view take effect.

Click Add View again to insert another view, the right view, into the configuration. In the
View Name field, type “Right View, +35 degrees.” For location keep the default of (0,0,0).
For azimuth enter 35 degrees. Keep the elevation at 0.0. For the field-of-view (FOV) enter 15
degrees for left and right, and 12 degrees for top and bottom. Click Apply to have the new
view take effect.

For the client views, start the application but do not click the Start VRSG button to enter
visualization mode. When the master channel view starts, it will automatically start the client
views.

Note: If you start a client view manually by clicking the Start VRSG button, that view
becomes an independent “Stealth” and will not respond to viewpoint coordination commands
from the center view.

Next, click the Ping Clients button to confirm a successful hardware and software setup. If the
system reports that a successful reply was received from the two views, click Start VRSG on
the master channel machine (view 2, center view) to start all three views.

Troubleshooting

If you encounter problems with the VRSG master channel starting the client channels:

e Verify the IP address on the VRSG Dashboard’s Client Views tab is appropriate for your
subnet. If you reconfigured the LAN, a stale address might be listed on the tab.

o Check the Site/Host/Entity IDs of each client view. Make sure those entries match what
the other channels are set to under their Advanced Startup Parameters settings.

o Ensure the issue is not the Windows firewall. When VRSG is run for the first time on a
machine, Windows prompts whether to unblock it. If someone at your site confirmed that
Windows should block VRSG, it cannot communicate with client channels. Open the
firewall settings in the Windows Control Panel and add the VRSG executable to the
exceptions list.

Chapter 3 Running VRSG With Synchronized Channels 3-13

Projection considerations for multi-channel
configurations

In a perspective projection, the angular distance between pixels is non-uniform, independent
of the display surface. The angular distance between the pixel at the center of projection and
its neighbor is the smallest of the entire scene. Conversely at the edge of the display, the angle
between the pixels at the edge and their neighbors are the largest. This is because the pixels
are equidistant on the plane of projection, but form increasingly larger angles when a ray is
shot between the camera and pixels. The degree of non-uniformity increases with larger
FOVs. An image generator must first produce an image on a perspective projection, which is
then resampled during a warp/blend phase to adjust for the non-planar display surface.

The input image can become under-sampled during the warp/blend phase, which introduces
aliasing. More distortion is introduced in the input image with excessively wide FOVs, and it
has an impact on any given IG’s performance. Wider FOVs force VRSG to draw more
content, such that the density of maximum allowed content would need to be scaled back
commensurate with the FOVs. MVRsimulation recommends keeping VRSG’s FOV to 90
degrees or less in these projection setups for curved displays or domes.

In an attempt to lower the cost of a dome simulator, one recently fielded pre-production
solution has split the projectors into two frusta, one for the left half of the projector and
another for the right half. In this case, each VRSG channel must render two scenes instead of
one. Specifically, the IG renders two separate simultaneous windows; for example, rendering
two 2048 x 2160 scenes instead of a single 4096 x 2160 scene. As result, the scenes have
much smaller FOVs and better aspect ratio. The narrower FOV images have more uniform
pixel spacing and less geometric distortion, resulting in an improved result of the warp/blend
pass. This solution can help with distortion and resolution issues, however there is an
overhead cost in having VRSG render two scenes per frame. Performance-wise there is an
additional tradeoff in the overhead associated rendering two frusta, as VRSG must perform
per frame two database traversals, two model culling passes, two cloud passes, and so on.
Although the warping/blending result is improved, more workload has been shifted to the IG.

In addition, the FOV of the combined two frusta will be larger than the single one, so the total
content VRSG must render per frame will increase. For example, in using eight (8) 4K
projectors instead of 14 projectors in a 5-meter dome, the 4k projectors are nearly a 2:1 aspect
ratio at 4096 x 2160. The projectors deliver the VRSG scene onto the dome with significant
overlap, and therefore the wide aspect ratio requires the very large FOV. The warping and
blending software must resample the huge FOV, where the image is undersampled in many
places, leading to aliasing and loss of resolution. The performance impact of this approach of
doubling up VRSG workload per channel needs to be evaluated on a case-by-case basis, with
two more considerations. When a system is configured such that two views from one visual
channel are generated, the load on VRSG is such that some features cannot be displayed
simultaneously while maintaining the required 60 Hz frame rate.

Keep in mind that what might be acceptable in VRSG performance today may not be
acceptable in the future with new VRSG features that require significantly more rendering
capacity. To improve the realism of the warfighter’s training experience and take advantage
of industry improvements in graphics technology, MVRsimulation enhances VRSG with new
features on an ongoing basis. As well, improvements are continuously made to the 3D

3-14 MVRsimulation VRSG User’s Guide

content. As a rule, MVRsimulation develops all VRSG features and 3D content for 60 Hz
performance and assumes a 60 degree FOV for a single render channel.

Disabling flow control

Flow control is a feature of a system’s network card and/or network switch. Disabling flow
control is crucial to ensure real-time delivery of data to the channels, and to avoid data
buffering at the network switch level. If enabled, the switch will buffer data and not deliver it
to the channels in real time. Flow control can typically be disabled at the PC end via the
hardware properties of the network card. If your system is using a managed network switch,
you can disable flow control via the switch’s user interface to. This setting might need to be
put into effect on a per-port basis.

Using test patterns delivered with VRSG

VRSG is delivered with two test pattern models that contain 1 meter wide black and white
stripes. These models, resolution_horz.hpx and resolution_vert.hpx, are located in
\Models\Other\. The host system can place them at various ranges to conduct the necessary
measurements or subjective assessments.

VRSG is also delivered with a plugin with a set of test patterns (using the abovementioned
models) that can be used to work with misalignment of projectors in a display or to identify a
field-of-view that does not match the display geometry.

To activate the plugin, move the file TestPatterns.dll from the
\MVRsimulation\VRSG\Plugins\Displays subdirectory so that it resides directly in the
\Plugins directory, as in: \MVRsimulation\VRSG\Plugins\TestPatterns.dll.

To access the test patterns in VRSG, press F3. Doing so cycles through three patterns, which
are displayed as full-screen overlays.

e The first is a black/white checkerboard pattern, where each square is 10 degrees by 10
degrees. This pattern is useful for measuring contrast.

e The second pattern is comprised of a grid of latitude and longitude lines displayed on the
loaded terrain. Each line is 1 degree apart, creating a grid of 1 degree by 1 degree
squares. This pattern is useful for verifying the warp/blend calibration in a curved
display, such as in an immersive dome setup. If the calibrations are off, the lines would
appear wavy in places.

e The third is a resolution pattern: of 3 vertical white bars on a black background. You can
zoom in and out of this image by pressing the keyboard I and O keys; each keystroke
moves the pattern 1% in or out from its current range. Move the pattern up/down and
left/right with the arrow keys. Press the right-arrow to increment the azimuth, up-arrow to
increment the elevation. Press the left-arrow to decrement the azimuth, down-arrow to
decrement the elevation. Press the R key to roll the pattern in 90 degree increments.

Chapter 3 Running VRSG With Synchronized Channels 3-15

Contrast test pattern Warp/blend calibration test pattern Resolution test pattern

Instead of manually moving the placement of the resolution test pattern, you can map the
arrow keys to a set of predetermined azimuth-elevation-roll-range combinations in a .csv file
and then press the arrow keys to cycle display of the resolution test pattern among the
specified locations. In the .csv file, denote the azimuth, elevation, and roll in degrees, and
range in meters.

(Note that the built-in test pattern object is 3 meters by 3 meters, which means if you placed it
3000 meters away, it will subtend 1 milliradian on the display.)

Name the .csv file as “resolution_pattern_locations.csv” and place it directly in the VRSG
installation directory (\MVRsimulation\VRSG).

BH = resolution_pattern_locations.csv - Bxcel T EH - O X
HOME INSERT PAGELAY FORMULA DATA REVIEW VIEW ACROBAT -
"D % A = % EﬂonditionalFormattingv El #
B - [Format as Table -
Paste %; Font Alignment Number % ormat as fable Cells Editing
. - - - [cellstyles~ - -
T fl v
A B C 8] E F G H I -
1 o o o 5
2 20 o 45 10
3 -20 o 90 10
4 o 10 180 10
5 0 -10 270 10
6 -
resolution_pattern_locations n'_-i-_‘:n 4 3

Once the .csv file is in place, press the arrow keys to cycle through these predetermined
locations. If the .csv file is removed from the VRSG directory, manual placement of the
resolution test pattern is again active. The test pattern plugin reads .csv file every time you
press F3 to access the resolution test pattern, which mean you can edit the .csv file to make
adjustments without having to restart VRSG. In a shared file system environment, you need
to only edit one instance of the .csv file, and it can be done using a system that is not one of
the channels.

Running 3D benchmarking tests

When you first install VRSG on one or more of your visual channels, consider running a 3D
benchmarking tool to examine the effectiveness and performance of the graphics card on the
machine when it runs 3D graphics applications. Consider running these benchmark tests twice
and compare the scores. You should confirm that your system has all working visual channels
independent of VRSG. If you see significant variation in the two scores, run two more tests

3-16 MVRsimulation VRSG User’s Guide

and see whether the scores converge. If they do not converge, you might have a problem with
the 3D graphics card on one or more channels.

A baseline report can be useful to compare with a later report if you need to troubleshoot
VRSG performance problems on your system. This report is also useful for comparing
performance benchmarks after installing a new channel or a new graphics card.

You should rerun benchmarking tests periodically to ensure your multi-channel system is
performing optimally. Although test results might vary slightly, a large decrease in test results
indicates degradation in some part of your 3D system. The performance of an
MVRsimulation product scales in direct proportion to this score; the higher the result, the
better this product will perform on your system. For more information about 3D
benchmarking, see the MVRsimulation Product Installation Guide.

CHAPTER 4

Loading Content into VRSG

The set of
directory paths
VRSG is instructed

N Bl C:\MVRsimulation\VRSG\Terrain Add... 4'5)("
to load is called its
4 R
ﬁl Save Settings...

search path.

VRSG is a geospecific render engine that allows the user direct control over the scope of the
3D and visual content needed for a training session. VRSG uses a search path that is setup on
the Dashboard to look for content to load into the visualization window.

This chapter provides information on terrain to help users properly load 3D terrain databases
and other related content in VRSG. Review the information and follow the steps in this
chapter to load the terrain, models, scenarios, and viewpoints into VRSG.

| @ VRSG v7 Dashboard ? X
Oceans | Shadows I VR Options | About l
Startup Parameters | AtachOptions | Viewpoints | Graphics | Envionment | Preferences | Scenarios |
Output Device [0.0: NVIDIA RTX A5000 Laptop GPU 16C_v | ™" Enable Sensor Modes . .
I” Enable Mission Functions MVRS[mUIa"On
UDP Port 3000 (DIS Defautt is 3000) I~ Enable Radar

I Enable 3D Sound

Exercise ID |1 (0forall) I~ Muttichannel Master Start VRSG

I” Enable Folder Pre-Scanning
- Folders for Temain, Models, Scenarios, and Other Content

rInput Devices

B6DOF Controller: SpaceMouse Pro g Load Settings...
Joystick Device: Detected Rescan.. | More Options... |
Help...

Tracker: None detected

Overview of terrain data organization and storage

Terrain data is organized by region and distributed either on an external drive or as part of a
collection encompassing all or portions of the MVRsimulation World Terrain Database. This
data can be accessed by using an MVRsimulation regional terrain drive, direct attached large
volume (DALV) device, network attached storage (NAS) server, or World Terrain Database
server. The CONUS and OCONUS terrain are provided in the CONUS NAIP directory,
which is sorted for distribution by geographical region. The rest of the world is distributed by
continent and sorted by country.

4-2 MVRsimulation VRSG User’s Guide

The complete collection of MVRsimulation’s VRSG terrain is saved in regional directories:

MVR Terrain (Gz) » Terrain

Name

Directory that
contains the entire Africa
collection of 1 Asia
MYVRsimulation 1 Australia and Oceania
terrain databases. CONUS NAIP

Europe

North America

South America

Date modified

11/26/2022 1:27 PM

7/5/2023 9:57 AM
7/5/2023 9:57 AM

3/25/2022 11:07 AM

7/5/2023 9:57 AM
7/5/2023 9:57 AM
7/5/2023 9:57 AM

The CONUS NAIP directory is divided into geographical regions:

MVR Terrain (G) » Terrain » CONUS NAIP

Directory that M

contains the

collection of all " North Central

CONUS NAIP Northeast

terrain databases. Northwest
South Central
Southeast
Southwest

Date modified

8/9/2022 1:25 PM
7/3/2023 8:04 AM

8/15/2022 10:30 AM

7/3/2023 8:12 AM
7/3/2023 8:17 AM

1/6/2023 11:38 AM

Type

File folder
File folder
File folder
File folder
File folder
File folder
File folder

Type

File folder
File folder
File folder
File folder
File folder
File folder

Each region of terrain includes both \Culture and \Terrain subdirectories as shown in the

following example of the Africa directory:

Contains 3D
eospecific) .)
geosp f MVR Terrain (T:)) > Terrain > Africa »
databases
including ~
vrsg.clt files. Name
T3 culture
T3 Terrain
Includes %] MVRsimulation Software License and Wa...
reglonal MDS - MVRsimulation Software License and Wa...

terrain tiles,
usually without
any 3D culture.

- MVRsimulation Terrain Drive ReadMe
- VRSGTerrainSearchPath

Date modified

5/6/2024 7:54 AM
5/6/2024 8:49 AM
3/13/2023 8:32 PM
3/13/2023 8:30 PM
3/28/2024 12:21 PM
2/19/2019 10:55 AM

Type

File folder

File folder
Adobe Acrobat C
Text Document
Text Document

Text Document

The \Culture subdirectory contains the region’s geospecific 3D models that are loaded on the
terrain when VRSG initially renders the visualization window. The pre-loaded models can
include buildings, fences, trees, light poles, and static characters or vehicles. The \Culture
directory contains one or more vrsg.clt files that instruct VRSG where to load the cultural

items.

The Terrain subdirectory contains the ortho imagery and elevation data associated with the
imagery rendered in the visualization window. The terrain files are saved in
MVRsimulation’s VRSG round-earth terrain format (.mds).

All 3D models that are loaded before a training session begins are considered culture. All
imagery loaded during a VRSG session is considered terrain.

Chapter 4 Loading Content into VRSG 4-3

The Culture subdirectory

The \Culture directory contains geospecific databases specifically modeled to replicate
detailed environments such as cities or airfields. These databases are designed to be
geographically smaller than the entire regional terrain and integrate seamlessly with the
broader terrain found in the \Terrain subdirectory.

VRSG pre-loads all culture referenced in the search path upon startup. For this reason, you
want to only select the specific subdirectories associated with your training area. Loading an
entire \Culture subdirectory will drastically impact startup time and performance. See the
section “Configuring terrain in the VRSG Search Path” later in this chapter for more
information about how to properly set up the search path.

Key characteristics of the culture directories include:

e Geospecific 3D models and MDS tiles crafted specifically for the represented area.

When loaded with the corresponding \Terrain directory’s data, these databases blend
smoothly with the underlying terrain.

e These cultural elements enhance the realism of the simulated environment.

Each region of terrain will have a \Culture subdirectory that is organized according to its
location: either by U.S. State or by country. Individual areas of interest such as cities and
airfields will be further organized within each state and country directory.

The following states of the Northeast CONUS NAIP region have modeled geospecific
cultural databases in the \Culture folder:

MVR Terrain (G:) » Terrain » CONUS NAIP » Northeast » Culture

Directory of states ~
with available 3D Name Date modified Type
geospecific cultural I Maryland 7/3/2023 8:09 AM File folder
databases in the T Pennsylvania 7/3/2023 8:09 AM File folder
Northeast CONUS v t 7/3/2023 8:09 AM File fold
NAIP directory. - vermon 73/) e tolder
VRSGTerrainSearchPath.txt 7/3/2023 8:08 AM Text Document
Each state or country \Culture subdirectory will contain the specific areas of interest that are
modeled as shown in the following example of the airfields in Maryland:
MVR Terrain (T:) > Terrain > CONUS NAIP > Northeast > Culture > Maryland >
Directory of specific Name Date modified Type
cultural databases
in the Maryland T ATC-Aberdeen 5/7/2024 6:56 AM File folder
subdirectory. T KBWI-Baltimore 5/7/2024 7:04 AM File folder
T30 KMTN-MartinState 5/7/2024 7:05 AM File folder

| VRSGTerrainSearchPath 7/13/2023 3:07 PM Text Document

Structure of subdirectories in \Culture directory

The subdirectories within each \Culture directory usually contain the following folders: CLT,
MDS, Models, Viewpoints, and Scenarios. While you shouldn’t need to select any of the

4-4 MVRsimulation VRSG User’s Guide

Contains one or

subdirectories within \Culture, the contents of each cultural terrain database directory
generally adhere to the data structure illustrated in the following example:

MVR Terrain (G:) » Terrain > CONUS NAIP » Northeast » Culture » Maryland » ATC-Aberdeen

~

more vrsg.clt files.

Contains a subset
of terrain in MDS
format.

Contains 3D models for
the geospecific database.

The \Terrain
subdirectory
of Africa.

Terrain tiles of the
Africa region are
grouped by country.

Name Date modified Type Size
I ar 7/5/2023 10:07 AM File folder
MDS 7/5/2023 10:07 AM File folder
Models 7/5/2023 10:07 AM File folder
1 Viewpoints 7/5/2023 10:07 AM File folder
‘ D VRSGTerrainSearchﬁRm\ 7/3/2023 8:10 AM Text Document 1KB
A file that instructs VRSG on which Contains viewpoints for the
subdirectories to load and the order geospecific database.

in which they should be loaded.
Additionally, some cultural databases may include:

e Scenarios: Contains pre-scripted pattern-of-life scenarios provided by MVRsimulation,
created using Scenario Editor and tailored to the terrain.

e VectorData: Contains shapefiles of cultural features for use with MVRsimulation’s
Terrain Tools or Battlespace Simulations’ Modern Air Combat Environment (MACE).

Note: Previously created cultural feature files with the older convention of "metadesic.clt" are
respected by VRSG v7.

The Terrain directory

The Terrain directory contains a collection of terrain tiles in VRSG round-earth terrain format
(.mds). This directory includes terrain compiled from orthoimagery and elevation source data
and typically does not include geospecific 3D culture.

The Terrain directory should be loaded into the VRSG search path beneath any cultural
directory. See the section “Configuring terrain in the VRSG Search Path” later in this chapter
for more information about how to properly set up the search path.

Terrain directories at the continent level include subdirectories of terrain tiles which are
grouped by country name as shown in the Africa terrain directory example below:

MVR Terrain (T:) > Terrain > Africa > Terrain >

~

Name Date modified Type

T3 Algeria Terrain 5/6/2024 8:10 AM File folder
T3 Angola Terrain 5/6/2024 8:19 AM File folder
T3 Benin Terrain 5/6/2024 8:20 AM File folder
73 Botswana Terrain 5/6/2024 8:20 AM File folder
"3 Burkino Faso Terrain 5/6/2024 8:26 AM File folder
T3 Burundi Terrain 5/6/2024 8:27 AM File folder
T3 Cameroon Terrain 5/6/2024 8:27 AM File folder
T3 Central African Republic Terrain 5/6/2024 8:30 AM File folder
T3 Chad Terrain 5/6/2024 8:38 AM File folder
"3 Congo Terrain 5/6/2024 8:38 AM File folder

Terrain is loaded into VRSG on-demand. This means you can select the root Terrain directory
of any region without impacting performance. When loading terrain into VRSG, you have the

Chapter 4 Loading Content into VRSG 4-5

option to either select the entire Terrain directory to load all terrain data for that region.
Alternatively, you can choose to load individual countries or states (for CONUS NAIP) by
selecting their respective root directories.

Introduction to VRSG search paths

Upon startup, VRSG loads the default terrain, models, scenarios, and textures directory
installed with the software. To direct VRSG to load additional content, you must specify the
directories for the additional terrain, models, textures, scenarios, and other files. This set of
directory paths is called the search path.

Key Points about search paths:

e The search path allows you to customize how and in what order VRSG loads various
content.

e The order in which directories are listed is critical because VRSG searches the list from
top to bottom. Higher resolution or higher priority content should be listed first.

e To ensure accurate rendering of the 3D cultural content, the Culture directories must be
prioritized at the top of your VRSG search path.

e Use the arrows on the lefthand side to adjust the priority of the directories.

Configuring terrain in the VRSG search path

In the "Folders for Terrain, Models, Scenarios, and Other Content" section of the VRSG
Dashboard, list all paths to the terrain, models, and other files (such as cultural feature files
and scenarios) you want VRSG to load. These directories form the VRSG search path.

VRSG loads the directories in the search path before rendering terrain. Therefore, specify all
directories before starting the visualization window. If changes to the search path are needed
after starting the visualization window, you must exit and relaunch VRSG.

The order in which directories are listed in the search path is critical, as VRSG searches the
list from top to bottom. Cultural files and higher-resolution terrain insets located in the
\Culture directory should be listed at the top of the list with imagery and elevation data terrain
files from the \Terrain directory at the bottom. If VRSG finds a file for a specific terrain tile
in the first folder, it will ignore all subsequently found tiles with the same name. If a directory
that contains an .mds terrain tile with no culture is listed above a directory with an .mds
terrain tile of the same name that includes culture, the culture will not load since VRSG will
ignore the later terrain tile.

Note: MVRsimulation recommends only loading culture for the specific areas you will be
training in to improve performance and reduce start times. You can include terrain outside of
the training area in the search path without affecting performance since VRSG loads the
underlying terrain on-demand.

Examples of loading terrain and culture into the VRSG search path are shown below in the
section “Examples of VRSG search paths.”

4-6 MVRsimulation VRSG User’s Guide

@ VRSG v7 Dashboard ? X
Shadows | VR Options | About
Startup Parameters] Attach Options | Viewpoints I Graphics } Environment | Preferences Scenarios Oceans
Be sure to place the T MY Rsimulation
. i X nable Sensor Modes
Culture dlrectory at Output Device |0.0. NVIDIA RTX AG000 47.9883GB LI -
Enable Mission Functions

the top of the. ™~

loading order.

Use these arrow
buttons to adjust the
loading order of the
terrain directories.

UDP Port |3000 (DIS Default is 3000) [~ Enable Radar
[Enable 3D Sound Start VRSG

(0 for all) [~ Multichannel Master

Exercise |D
[¢" Enable Folder Pre-Scanning

~Folders for Terrain, Models, Scenarios~and Other Content Exit
P G:\Terrain\CONUS NAIP\Northeast\Culture\Maryland\ATC-Aberdeen Add...
Gi\Terrain\CONUS NAIP\Northeast\Terrain
Save Settings...
hd Remove
Input Devices
Load Settings...

6DOF Controller: SpaceNavigator

Joystick Device: None detected PO

Tracker: None detected Help...
/
Click here to add a directory Highlight a directory and click here to
to the VRSG search path. remove it from the VRSG search path.

To load directories in the search path:

1. On the Dashboard’s Startup Parameters tab, in the Folders for Terrain, Models,
Scenarios, and Other Content section, click the Add button.

2. Browse to the directory you want to add to the search path and click OK.

3. For each additional directory you want to load, click the Add button and browse again to
the directory of interest and click OK.

4. Use the arrow buttons on the left of the list of directories (the search path list) to move a
directory higher or lower in search priority.

5. Once you have added all the cultural files directories and terrain tile directories to the
search path, verify they are in the correct priority order (culture above terrain) and update
as needed.

6. Click Start VRSG to load the visualization window.

Note: The order in which directories are listed is critical, as VRSG searches the list from top
to bottom. In general, culture directories should always be placed at the top of the VRSG
search path with Terrain directories at the bottom.

Dynamic terrain tile updates

As of version 7, VRSG can accept a UDP message from Terrain Tools or a simulation host
notifying it that a new tile has been built. VRSG adds the path of the new tile to the top of the
runtime search path. If an older version of the same tile is already loaded, VRSG unloads it
and loads the new one. You can also load the newly built or rebuilt tile manually, by dragging
it to the visualization window.

Chapter 4 Loading Content into VRSG 4-7

Examples of VRSG search paths

This section will describe various VRSG search paths and how they are rendered in the
VRSG visualization window, accompanied by images of the associated Dashboard’s Startup
Parameters tab.

Example 1 - Loading the LEAB-Albacete-Spain terrain database:

In this example, only the LEAB-Albacete-Spain airfield from the Culture directory will be
rendered in VRSG, along with the underlying terrain for the entire country of Spain.

e
| e VRSG v7 Dashboard ? X
| Oceans | Shadows | VR Options | About
Startup Parameters | Attach Options I Viewpoints I Graphics I Environment | Preferences | Scenarios |
Output Device [0.0: NVIDIA RTX AS000 Laptop GPU 16¢ | | Enable Sensor Modes . .
I~ Enable Mission Functions MVRSlmUIatlon
UDP Port {3000 (DIS Defautt is 3000) [~ Enable Radar

I~ Enable 3D Sound

Exercise ID |1 (0forall) I~ Multichannel Master Start VRSG l

[¥ Enable Folder Pre-Scanning
~ Folders for Temain, Models. Scenarios. and Other Content

m ; : Exit
T:\Temain\Europe\Culture\Spain\LEAB-Abacete-Spain Add...
S T:\Temain\Europe\Temain\Spain Temrain Q
~ Remove =
Save Settings...
6DOF Controller: SpaceMouse Pro _ Load Settings...
Joystick Device: Detected MI
Tracker: None detected
Help...

rInput Devices

4-8 MVRsimulation VRSG User’s Guide

Example 2 - Adding an additional \Culture subdirectory:

In this example, a cultural directory for wind turbines located around southern Spain will be
added to the visualization window. The underlying terrain will still display only the country

of Spain.
-
i e VRSG v7 Dashboard 7 X]
| Oceans | Shadows | VR Options | About |

Startup Parameters | Attach Options I Viewpoints I Graphics I Environment | Preferences | Scenarios |

Output Device [0.0: NVIDIA RTX A5000 Laptop GPU 16Cv| | Enable Sensor Modes -
[~ Enable Mission Functions N\VRS|mUlat|0n
UDP Port |3000 (DIS Defautt is 3000) [~ Enable Radar

I~ Enable 3D Sound

| Exercise ID |1 (Ofor all) [~ Multichannel Master Start YRSG
[V Enable Folder Pre-Scanning
Exit

r— Folders for Temrain, Models, Scenarios, and Other Content

e T:\Terrain\Euroe\Culture\Sain\LEAB-Nbacete-Sain
: o\Cut & °

T: \Terraln\Eumpe\Terraln\Spam Temain

o Remove =
Save Settings...

rInput Devices

Ao Rt ” Load Settings...
Joystick Device: Detected More Options...
Help...

Tracker: None detected

Example 3 - Removing and adding additional areas of interest:

In this example, the Wind Turbines have been removed and cultural files from LPMR-Monte-
Real airfield in Portugal has been added. However, the underlying terrain for Portugal has not
been added into the search path, so only the cultural files and high-resolution terrain located
in the \Terrain\Europe\Culture\Portuga\LPMR-Monte-Real directory will be seen after
leaving the border of Spain.

@ VRSG v7 Dashboard ? x
Oceans I Shadows | VR Options l About |
Startup Parameters | Attach Options I Viewpoints | Graphics I Environment | Preferences | Scenarios |
Output Device [0.0: NVIDIA RTX A5000 Laptop GPU 16Cw| | Enable Sensor Modes o
I~ Enable Mission Functions MVRS|mUIat|0n
UDP Port {3000 (DIS Defaut is 3000) [~ Enable Radar

I~ Enable 3D Sound

Exercise ID |1 (0for all) [~ Muttichannel Master Start VRSG
[V Enable Folder Pre-Scanning
g Exit
Remove =
Save Settings...
rInput Devices
6DOF Controller: SpaceMouse Pro Load Settings...
3 i More Options...

Joystick Device: Detected
Help...

- Folders for Temain, Models, Scenarios, and Other Content

T: \Terraln\Europe\Terraln\Spam Temain

il

Tracker: None detected

Chapter 4 Loading Content into VRSG 4-9

Example 4 - Adding the underlying terrain for Portugal:

In this example, the underlying terrain for Portugal has been added to the search path. Now
the terrain from LEAB-Albacete-Spain to LPMR-Monte-Real will be contiguous through
Spain and Portugal.

. S S
@ VRSG v7 Dashboard ? X |
Oceans I Shadows | VR Options | About |
Startup Parameters | Attach Options I Viewpoints | Graphics I Environment | Preferences | Scenarios | Q 9
Output Device [0.0: NVIDIA RTX ASU0 Laptop GPU 16 <] | Enable Sensor Modes C
[~ Enable Mission Functions MVRSlmUIatlon
UDP Port {3000 (DIS Default is 3000) [~ Enable Radar

I~ Enable 3D Sound

- Folders for Temain, Models. Scenarios, and Other Content

Exercise ID |1 (0for all) I” Muttichannel Master Start VRSG
T:\Temain\Europe\Cutture\Portugal\LPMR-Monte-Real

[V Enable Folder Pre-Scanning
Exit
T:\Temain\Europe\Tenain\Spain Temain
T:\Terain\Europe\Temain\Portugal Temrain Remove
Save Settings...

rInput Devices

6DOF Controller: SpaceMouse Pro - Load Settings...
Joystick Device: Detected More Options...
Help...

ﬂ T:\Temain\Europe\Cutture\Spain\LEAB-Albacete-Spain

Tracker: None detected

Example 5 - Using the region’s root terrain directory.

In this example, the root \Europe\Terrain directory has been loaded. This means VRSG will
render 3D cultural entities of only LEAB-Albacete-Spain and LPMR-Monte-Real. You will
also see all of Europe’s underlying terrain. This approach allows you to load only selected
cultural areas to improve performance while including the imagery and elevation data for the
entire region. Using a geographically expansive \Terrain directory does not impact
performance, as VRSG will dynamically load only the subset of terrain tiles that are visible
from the current viewpoint.

4-10

MVRsimulation VRSG User’s Guide

p
e VRSG v7 Dashboard

Oceans I Shadows | VR Options l About |
Statup Parameters I Attach Options I Viewpoints | Graphics I Environment | Preferences | Scenarios |

Output Device [0.0: NVIDIA RTX A5000 Laptop GPU 16C_~ | I Enable Sensor Modes
[~ Enable Mission Functions

UDP Port [3000 (DIS Defautt is 3000) [~ Enable Radar
[~ Enable 3D Sound
Exercise ID |1 (0for all) [~ Muttichannel Master

[¥ Enable Folder Pre-Scanning
- Folders for Temain, Models, Scenarios, and Other Content

T:\Temain\Europe“\Cutture\Spain\LEAB-Albacete-Spain
T:\Terrain\Europe\Cutture\Portugal\LPMR-Monte-Real
i pe\Temain

Remove

rInput Devices

6DOF Controller: SpaceMouse Pro _
Joystick Device: Detected More Options...

Tracker: None detected

MV Rsimulation

Start VRSG
Exit
Save Settings...
Load Settings...
Help...

Example 6 — Culture and terrain from Arizona in the CONUS NAIP Southwest directory:

Here is an example featuring three airfields in Arizona from the Culture directory, along with
the underlying terrain data of Arizona. The culture folders are listed above the terrain

directory since they are higher fidelity.

P
e VRSG v7 Dashboard

Oceans | Shadows | VR Options | About |
Startup Parameters | Attach Options I Viewpoints | Graphics I Environment | Preferences | Scenarios |

Output Device [0.0; NVIDIA RTX A5000 Laptop GPU 16C =] | Enable Sensor Modes
[~ Enable Mission Functions

UDP Port {3000 (DIS Defautt is 3000) [~ Enable Radar
I~ Enable 3D Sound
Exercise ID |1 (Oforall) [~ Multichannel Master

[¥ Enable Folder Pre-Scanning

- Folders for Temain, Models. Scenarios, and Other Content

| |T:\Temain\CONUS NAIP\Southwest\Cutture\Arizona\KLGF-Laguna Add...
T:\Temrain\CONUS NAIP\Southwest\Culture\Arizona\KTUS-Tucson
T:\Temain\CONUS NAIP\Southwest\Culture\Arizona\LukeAFB
M T:\Temain\CONUS NAIP\Southwest\Terain\Arizona

rInput Devices
6DOF Controller: SpaceMouse Pro
Joystick Device: Detected
Tracker: None detected

Rescan... More Options...

MV Rsimulation

Start VRSG
Exit
Save Settings...
Load Settings...
Help...

Example 7 — In this example, two airfields in Maryland and one in Vermont are loaded from
the Culture directory. The entire Northeast Terrain database is loaded as well.

Chapter 4 Loading Content into VRSG 4-11

e T S S=T— N
e VRSG v7 Dashboard ? X
Oceans | Shadows | VR Options l About |
Startup Parameters I Attach Options I Viewpoints I Graphics I Environment | Preferences l Scenarios | Q 9
Output Device [0.0: NVIDIA RTX A5000 Laptop GPU 16C_v | I Enable Sensor Modes - .
[~ Enable Mission Functions N\VRSlmUIatlon
UDP Port 3000 (DIS Default is 3000) I~ Enable Radar

[~ Enable 3D Sound

r~ Folders for Temain, Models, Scenarios, and Other Content
ﬂ T:A\Temain\CONUS NAIP\Northeast\Culture \Maryland\KBW|-Baltimore

Exercise ID |1 (0for ally [~ Muttichannel Master Start VRSG
[¥ Enable Folder Pre-Scanning
Exit

T:A\Temain\CONUS NAIP\Northeast\Culture \Maryland\KM TN-MartinState
T:\Terain\CONUS NAIP\Northeast\Culture \Vermont\KBTV Burlington
T:\Terain\CONUS NAIP\Northeast\Temain Remove "

Save Settings...

rInput Devices
Load Settings...
Rescan... E More Options... |

Help...

6DOF Controller: SpaceMouse Pro
Joystick Device: Detected
Tracker: None detected

Organizing custom culture and terrain files in VRSG

As described throughout this user’s guide, culture, textures, viewpoints, and scenarios play
crucial roles in enhancing the realism of the virtual 3D world rendered by VRSG. VRSG
supports the use of multiple files for cultural features, viewpoints, and textures, offering
organizational flexibility. This capability is particularly useful when managing multiple
scenarios that utilize the same underlying terrain but require specific cultural details and
textures.

The terrain directories included with VRSG serve as examples of how to organize these files
effectively. For instance, the Somalia terrain directory demonstrates a structured approach to
managing a complex terrain project, located at \MVRsimulation\VRSG\Terrain\Somalia.

Managing Custom 3D Content

MVRsimulation advises storing your own culture and terrain files separately from VRSG's
installed files. Before upgrading to a newer version of VRSG, always back up any custom
files added to installed terrain directories to prevent loss of data during the upgrade process.

For your site-specific models, create a subdirectory named \User within the installed
\MVRsimulation\VRSG\Models path. This keeps your custom models separate from VRSG’s
native models:

\MVRsimulation\VRSG\Models\User

By default, VRSG searches the \MVRsimulation\VRSG\Models\User directory, so you do not
need to add it to the search path. [I had no idea VRSG did this, but I confirmed in code that it
does indeed look for Models/User by default, and will traverse that subdirectory recursively
if it exists. Cool!] However, if you store models in a different location outside
\MVRsimulation\VRSG\Models, you must add the directory to the top of the search path to
ensure VRSG will find the models.

Ground clamping of models in VRSG depends on the subdirectory where the model is stored.
MVRsimulation recommends organizing your site’s models into specific subdirectories:

4-12 MVRsimulation VRSG User’s Guide

\User\Military

\User\Commercial

\User\Characters

\User\Buildings

\User\Trees

\User\Signs

\User\Other

Additionally, create a \Textures subdirectory under each \User directory to store textures

associated with models. For example, textures for user-built building models would be
located at \MVRsimulation\VRSG\Models\User\Buildings\Textures.

Note: Before removing an older version of VRSG during an upgrade, remember to back up
the \MVRsimulation\VRSG\Models\User directory to preserve your custom content.

For more detailed information on managing models, refer to the chapters: “Configuring
Models and Events,” “Converting FBX and OpenFlight Formats to MVRsimulation Runtime
Formats,” and “3D Model Content.”

Managing textures

Textures associated with terrain tiles should be placed in a subdirectory named \Textures
within the directory of the tiles. These textures are used for models or applied directly to the
terrain (e.g., road textures or microtextures). Terrain tiles created with MVRsimulation
Terrain Tools may reference external textures such as for roads or fences, and these textures
must be stored in the \Textures subdirectory.

An example of a terrain directory with a Textures subdirectory can be seen at
\MVRsimulation\VRSG\Terrain\A fghanistan\MDS\Textures

For more information on managing textures, refer to the chapter “Manipulating Textures.”

Microtextures

Microtextures are high-resolution, geotypical ground textures used to enhance terrain detail at
ground level. VRSG blends one or more microtextures with geospecific terrain imagery
during runtime.

Each directory of terrain tiles can have its own unique microtexture stored in the appropriate
\Textures subdirectory. VRSG applies the microtexture present in this subdirectory to all
terrain tiles within that directory.

An example of a directory containing microtextures can be found in the VRSG installation
directory at \MVRsimulation\VRSG\Terrain\Somalia\Kismayo\MDS\Textures.

Water Textures to Override VRSG’s Default:

You can specify a custom water texture on a per-tile directory basis to replace VRSG’s
default water texture during runtime. This customization is useful when representing bodies
of water that differ significantly in color from VRSG’s default water.

The custom water texture file must be named “water_override.tex” and reside in a \Textures
subdirectory within the directory containing the associated terrain tiles. Additionally, provide
a lower resolution version named “water_override low_detail.tex” for blending at greater

Chapter 4 Loading Content into VRSG 4-13

distances. Ensure the image file meets VRSG’s texture requirements as outlined in the chapter
“Manipulating Textures.”

An example of a custom brown water texture can be found in the
\MVRsimulation\VRSG\Terrain\Afghanistan\MDS\textures directory.

Texture-material attribution in VRSG

Utilizing VRSG’s physics-based sensor capability involves attributing material codes to scene
elements through texture mapping. One approach is creating a vrsg.irm table to map textures
to materials. This file can be placed in any directory within VRSG’s search path. The default
vrsg.irm file is located in the \MVRsimulation\VRSG\Textures directory.

For example, each geospecific terrain may have its unique vrsg.irm file, such as the one
located in the \MVRsimulation\VRSG\Terrain\A fghanistan\vrsg.irm directory.

For detailed guidance on mapping textures to material codes for sensor simulation, refer to
the chapter “Working with Sensor-View Modes and Physics-Based IR.”

Multiple vrsg.irm Support

VRSG supports multiple vrsg.irm files, which can be stored in subdirectories of models they
apply to. If multiple instances of vrgs.irm files reference the same texture, the first one will be
used. In this case, VRSG will output conflicts to the VrsgError MachineName.txt file located
in the VRSG root directory, typically C:\MVRsimulation\VRSG.

Wind Sensitivity Metric

VRSG v7 allows you to assign a wind sensitivity metric to textures within the vrsg.irm file, as
demonstrated in the default \WVRSG\Textures vrsg.irm file. This feature enables vegetation
textures to dynamically respond to wind direction and velocity.

To assign a wind metric to a vegetation texture, use the —-windSensitivity= command
with a sensitivity value and the texture name. This command controls how vegetation models
using the specified texture respond to wind. In the default vrsg.irm file, several vegetation
textures utilize this command:

grassl3-field 4019 -windSensitivity=0.3

poppy0l field 4210 -windSensitivity=0.3 -treeShader

poppy02 field 4210 -windSensitivity=0.3 -treeShader

poppy03 field 4210 -windSensitivity=0.3 -treeShader

Ensure that the model's base is at the origin (not underground) for the wind sensitivity
command to function correctly. During simulation, wind direction typically originates from
an external system. To test the vegetation texture in VRSG, press the W key to cycle through
wind directions.

Managing viewpoints

VRSG supports multiple viewpoint files located in various subdirectories, such as directories
organizing terrain tiles by geographic area or within specific scenario subdirectories. During
visualization, VRSG loads all vrsg.viewpoint files found within its search path. Viewpoints

created during a VRSG session are automatically saved in the default vrsg.viewpoint file
located in \MVRsimulation\VRSG\Viewpoints directory.

4-14 MVRsimulation VRSG User’s Guide

The vrsg.viewpoint file is formatted as an editable ASCII text file. This format allows you to
easily copy and paste new viewpoints from the default vrsg.viewpoint file to create custom
terrain-specific viewpoint files. This capability enables you to manage specific viewpoints by
saving them in a geospecific \Culture folder, ensuring they are loaded only when that \Culture
folder is included in the search path.

For example, terrain-specific viewpoints can be found at:
\MVRsimulation\VRSG\Terrain\Somalia\Kismayo\vrsg.viewpoint.

Additional viewpoint files are stored within the scenarios for Kismayo, located in
\MVRsimulation\VRSG\Terrain\Somalia\Kismayo\Scenarios\vrsg.viewpoint.

Creating VRSGTerrainSearchPath.txt

Managing search paths for VRSG content can be complex, especially when dealing with
multiple drives and directories containing various cultural features, microtextures, scenarios,
and more. To streamline this process, you can utilize a text file named
VRSGTerrainSearchPath.txt within a high-level directory listed in the Folders for Terrain,
Models, Scenarios, and Other Content section.

In VRSGTerrainSearchPath.txt, list the subdirectories in the order of priority that VRSG
should search. This ASCII text file functions similarly to the search path settings on the
Dashboard’s Startup Parameters tab, with VRSG sequentially searching from top to bottom.

This method is particularly useful in configurations where directory structures frequently
change or are intricate. Instead of managing these changes within VRSG, you simply update
the VRSGTerrainSearchPath.txt file. It also facilitates setting up complex search paths for
extensive collections of terrain tiles and cultural files by pointing to a single directory, which
then expands into a comprehensive list of directories and subdirectories.

Examples of VRSGTerrainSearchPath.txt setups can be found in the directories of the terrain
provided with VRSG installations, such as:

MVRsimulation\VRSG\Terrain\Syria\Hajin\VRSGTerrainSearchPath.txt

This file explicitly lists all \Hajin subdirectories that VRSG should search to render the
corresponding terrain tiles, models, and scenarios delivered with VRSG. Note that this file
does not include the underlying terrain for Syria located in the \Terrain folder. To incorporate
this, you would need to add it explicitly to VRSGTerrainSearchPath.txt or include the
directory manually in the search path.

ﬁ VRSGTerrainSearchPath.bet - Notepad - O X

File Edit Format View Help
ACLT

\\Models

AMDS

\Scenarios

\Viewpoints

The VRSGTerrainSearchPath.txt file is designed to store relative paths to directories using
Windows notation for relative path conventions, excluding absolute paths. Each line in the
file must begin with "." to indicate the root directory where the VRSGTerrainSearchPath.txt
file resides. You can specify parallel subdirectories branching from another subdirectory by

"nn

adding ".." after the initial ".".

Chapter 4 Loading Content into VRSG 4-15

For example:

AN..\..\..\New Terrain Directory\MDS

In Windows relative path conventions, a single dot denotes the current directory, and double
dots signify moving up one level in the directory hierarchy.

After creating the VRSGTerrainSearchPath.txt file, place it within the directory paths where
you want VRSG to search for 3D content to display. On the VRSG Dashboard’s Startup
Parameters tab, you only need to specify the directory containing the
VRSGTerrainSearchPath.txt file. VRSG will then search the folders listed in the file
accordingly.

In cases involving shared network drives, ensure to specify a path in the VRSG Dashboard to
at least one VRSGTerrainSearchPath.txt file on each shared drive. Note that paths stored in
the VRSGTerrainSearchPath.txt file cannot point to different shared network drives; they are
restricted to pointing to relative folders on the same drive.

Copying terrain from an MVRsimulation terrain drive to a
file storage server

When copying terrain from an MVRsimulation terrain drive to a permanent file storage
server, it's crucial to maintain the original file structure. MVRsimulation strongly
recommends preserving the directory structure as it exists on the MVRsimulation terrain
drive.

Certain directories, such as those containing high-resolution terrain tiles (\Culture directory)
or lower resolution tiles with broader coverage (\Terrain directory), serve specific purposes.
Retaining both directories separately ensures that VRSG can access the appropriate data
without confusion.

MVRsimulation terrain drives include default VRSGTerrainSearchPath.txt files that list all
necessary subdirectories implicitly included in VRSG’s search path. If you opt for a different
organizational structure on your file storage server, ensure these points are considered to
prevent potential loading issues when reorganizing terrain data.

Adding new databases

MVRsimulation frequently adds new and updated culture and terrain databases to
MVRsimulation’s Downloads Server. Users can download a subset of cultural or terrain
databases from downloads.mvrsimulation.com.

These databases should be added to the appropriate directories in your VRSG terrain storage.
To add any new or updated databases:

1. Visit downloads.mvrsimulation.com and log in.

2. Download the desired databases.

3. Unzip the downloaded files.

4. Copy the new databases into the respective \Culture folders within your VRSG terrain
directory structure.

https://downloads.mvrsimulation.com/

4-16 MVRsimulation VRSG User’s Guide

Additional terrain support

For further assistance with loading terrain, or any other terrain-related support questions, send
an email to terrain@mvrsimulation.com.

For new or updated terrain drives, send your request to sales@mvrsimulation.com.

Customers on active maintenance who need an account on MVRsimulation's Downloads
Server can request an account by sending an email to downloads@mvrsimulation.com.

CHAPTER 5

Configuring Models and Events

VRSG gives you complete control over the mapping of entity appearance in the virtual world.
An entity is any moving model in the virtual world, such as a truck, an aircraft, or an
individual combatant. In addition to controlling the appearance of entities you can associate
events in the virtual world with animation effects by editing the mapping information in
VRSG configuration files. To effectively manipulate the mapping information for entities and
events, you should become familiar with the DIS enumerations for entities.

Information about DIS is available at the MVRsimulation website and from these sources:

o [EEE 1278.1-1995, Standard for Distributed Interactive Simulation - Application
Protocols.

e JEEE 1278.2-1995, Standard for Distributed Interactive Simulation - Communication
Services and Profiles.

In the directory \MVRsimulation\VRSG\Models, MVRsimulation provides the latest
published DIS standards document for your convenience: SISO-REF-010-2023 Enumerations
v31.pdf.

VRSG has no explicit limit on the number of entities it can handle in a scene while
maintaining real-time performance. MVRsimulation customers have run exercises with
upwards of 15,000 entities while maintaining real-time performance. The only limitations
might be performance considerations such as the bandwidth of the communications channel,
model complexity, terrain complexity, viewing range, and how near the entities are in your
field of view.

Mapping virtual world entities

The \MVRsimulation\VRSG\Models directory contains MVRsimulation’s 3D content
libraries. The 3D model files are in MVRsimulation’s HPY or HPX model format; they
contain vertex data for the polygonal wireframe models that are rendered in the virtual world.
The file header information in a model file in turn references the appropriate texture map files
that will be applied to the polygonal model. (See the chapter “MVRsimulation 3D Model
Format” for information about MVRsimulation’s model file format.)

The mapping information that controls which model is mapped to the appropriate

DIS entity enumeration is contained in the ModelMap.ini file. This initialization file is
located in the \MVRsimulation\VRSG\Models directory. At runtime, VRSG loads one
ModelMap.ini, the first one it encounters in the search path. If no ModelMap.ini exists in the
search path, then VRSG loads the one in the \Models directory.

You can determine which ModelMap.ini file VRSG is using by inspecting the Vrsginfo *.txt
file, located in the \MVRsimulation\VRSG directory.

5-2 MVRsimulation VRSG User’s Guide

Modelmap.ini is installed with entries commented out. For entities you plan to use in VRSG,
edit the file to remove the comment character, change the defaults, and add your entity-
mapping information. The mapped entities will be displayed in the All Entities list on the
VRSG Dashboard’s Attach tab.

Note: VRSG uses the file \Models\LegacyModelNames.txt to convert between a legacy
model name and a new model name. This allows MVRsimulation to rename a model for a
VRSG release, to give the model a more tactically-appropriate name, or to replace a
deprecated model with a new one. This LegacyModelNames.txt enables legacy ModelMap
and cultural feature files to continue to work in VRSG, without generating any errors about
missing models, while providing continuous improvements to the MVRsimulation model
libraries.

ModelMap syntax

The ModelMap.ini initialization file must contain one mapping entry per line. Blank lines are
ignored, and lines that begin with a comment marker ‘!’ are also ignored. The general syntax
of'a ModelMap.ini entry is:

<DIS enumeration> <Model-class> <visual-model> [model load options..]

The DIS enumeration is a 7 number identifier that collectively identifies a particular type of
entity. The DIS terminology uses these labels for the 7 number identifier:

Kind Domain Country Category Sub-Category Specific Extra

Typical values for Kind are 1 (platform), or 3 (lifeform). Most entities that are associated with
a vehicle will use a Kind value of 1. Typical values for Domain include 1 (land), 2 (air), or 3
(surface). Typical values for Country are 225 (USA), 1 (Afghanistan), or 222 (Russia). For a
complete reference of the DIS enumeration values, see the documents referenced on the
previous page.

For a DIS enumeration in the ModelMap.ini file, you can enter an asterisk ‘*’ for any of the 7
numbers. An asterisk will match any value from an incoming entity. When VRSG sees a new
entity on the network, it scans ModelMap.ini from top to bottom, searching for an
enumeration match. The values of the enumeration will match if they are an asterisk, or if the
given number matches that of the new entity. You should place more specific entries towards
the top of the file, followed by more general entries towards the bottom of the file.

To make an entity invisible (hidden), map its enumeration to the model file empty.hpx.

Each model in the ModelMap.ini file is loaded only once, and only one copy is stored in
memory. Multiple entries using the same model name in the ModelMap file (as well as
multiple instances of the model in the scene) will all share a single instance of the model's
resources (textures and geometry) in system memory. This means that if you have multiple
DIS entities in a VRSG scene that use the same model, VRSG will load that model only once.

The model class informs VRSG how to display the particular entity. Possible values for class
are the keywords Vehicle, Human, Bubble and Cylinder. These model classes and their
application are described in the sections below.

Displaying vehicle models

The vehicle model class is used for entities that are associated with a vehicle or other rigid-
body model. In ModelMap.ini, such models begin with the class vehicle. For example:

Chapter 5 Configuring Models and Events 5-3

Use the sliders and
checkboxes to
activate and control
the intensity of the
cast shadows.

Click this checkbox
and enter a narrow
FOV threshold at
which shadow
enhancement will take

effect.

1 1 225 6 1 3 * Vehicle M1046.M-220.US.desert.hpy
1 1 225 2 5 2 * Vehicle M1128.M2.US.green.hpy

Displaying 3D animated human character models

The Human model class is used for entities that are associated with human life form entities.
A visual model that you associate with a Human class should be a 3D character model from
the MVRsimulation character model library. In ModelMap.ini, such models begin with the
prefix “human-" as in human-us_soldier-033.hpy. For example:

31 1 * * * * Human human-afghan-001.hpy

3 1 225 * * * * Human human-us_soldier-033.hpy

Human entities can have an optional weapon associated with them. To associate a weapon
with a human character, simply add the name of the weapon model after the name of the
character model in the ModelMap.ini entry. Weapon models in the MVRsimulation character
model library begin with the prefix “weapon-" as in weapon-m16.hpy. For example:

31 1 * * * * Human human-afghan-001.hpy weapon-ak47.hpy
3 1 225 * * * * Human human-us_soldier-003.hpy weapon-ml6.hpy

Other objects carried by human entities (such as a shovel, cell phone, laser designator, and so
on) can be attached to characters as weapons in the same manner. MVRsimulation’s model
library contains over 200 animated human character models that can be referenced by
ModelMap.ini. The library includes animations for these models to support the most common
life form states used by the DIS protocol. In addition, animations are provided for the primary
weapon state of the DIS protocol. Distinct animations are provided for the weapon in the
deployed position or in the firing position.

Displaying shadows cast by models and clouds

To display shadows cast by all objects in a scene (both dynamic entities and static cultural
models), and/or volumetric clouds, activate the appropriate option(s) on the VRSG
Dashboard’s Shadows tab.

@ VRSG v7 Dashboard

Startup Parameters | Attach Options | Viewpoints | Graphics | Environment | Preferences | Scenarios QOceans
Shadows | VR Options | Sensor | About | Varo | Vvarjo Chroma Key
i~ Object Shadows Cloud Shadows ——————————————
Disabled J— Darkest ’7 Disabled Ji Darkest

[Show planar vehicle shadows on terrain
[Show static culture shadows on terrain
[* Show dynamic objectto-object shadows

[~ Enable moon-shadows at night

—Shadow Quality

Enhance quality when
F FoV is narrower than 50 degrees

5-4 MVRsimulation VRSG User’s Guide

To activate shadows for clouds and/or objects (models), move the appropriate slider from the
left (shadows disabled) to the right to control the intensity of the cast shadows. Controlling
the intensity of each kind of shadow can be useful in scenes where there is a union of
shadows cast from multiple sources. The Object Shadows slider operates on the type(s) of
shadow selected. Minimize the performance impact of object shadows on a culture-dense
scene by unselecting one or more shadow options to optimize for performance.

VRSG has the ability to improve the appearance of dynamic cast shadows when viewing the
scene through a narrow field-of-view (FOV), such as those typically used for UAV sensors. A
narrow FOV induces high magnification and greater standoff distances, which can cause
shadows to become washed out or to disappear entirely. Click the Shadow Quality checkbox
to direct VRSG to render dynamic shadows at a higher resolution, for FOV angles below a
given threshold. (The FOV in use is shown on the Dashboard's Graphics tab.)

Using normal maps with vehicle entity models

Most entity models in the MVRsimulation military vehicle library have normal maps.
Because normal maps use a great deal of video memory, you must explicitly enable their use,
on a per-model basis, in the ModelMap.ini file. Add the -normalMap command to an entry
to enable normal maps. For example:

1 2 225 20 5 * * Vehicle A-10C.US.grey.hpy -normalMap

Suppressing a model from loading at startup

You can direct VRSG to not load an entity model at startup, and only load it if the entity
model appears in a simulation, by adding the command -delayedLoad to the entity’s line in
the ModelMap.ini file.

When a model in ModelMap.ini is marked with -delayedlLoad, VRSG will not pre-load it at
startup, thus the model will not consume any resources. If the model presents itself in the
simulation, VRSG will momentarily pause while it loads the model. This command is useful
if a model is not likely to appear in a simulation, and when the model does appear, a delay in
the visualization is acceptable. If new models are added to a simulation at scenario start time,
again there will be a short delay while VRSG loads the models.

Adding contrails, dust trails, or exhaust effects

You can add contrails to missiles or aircraft by adding additional keywords to the
ModelMap.ini entry. You can also add dust trails to ground-based vehicles in a similar
manner.

To assign a particle-based contrail to an entry in ModelMap.ini, add the command:
-contrailEffect=<effect name>

For example:

1 2225 1 9 * * Vehicle F18 RAAF.hpy -contrailEffect=contrail.par

In the example above, the default contrail contrail.par will be added to the F18_RAAF.hpy
model. MVRsimulation provides the file \Effects\contrail.par as a default contrail model. You
can edit this file or create different versions of it for different types of aircraft or missiles.

To add a dust trail to a ground-based entity, use the command -dustEffect=
<effect name>. MVRsimulation provides the file Effects\dust.par as the default dust trail
model.

Chapter 5 Configuring Models and Events 5-5

Entities can have multiple contrails or dust trails. To add multiple contrails or dust trails to a
model, simply repeat the command -contrailEffect=<effect name> multiple times.
The particle system name may be followed by an optional origin offset, to specify the origin
of particle emission.

The following example attaches two dust effects to the M1A2 model, one for the right track
and one for the left track:

1122511 * * Vehicle M1A2.hpy -dustEffect=dust.par -3.2,-1.3,0
-dustEffect=dust.par -3.2,1.3,0

Note the %, Y, and z offsets for the particle system must follow the particle system filename,
separated by commas with no spaces as shown above.
In order for the contrail or dust trail to emit particles, the following two conditions must hold:

e The entity is moving.
e The DIS trailing effects bits are set in the appearance mask of the EntityStatePDU.

The CIGI protocol has its own mechanisms to set the appearance mask. See the appendix
“CIGI Version 4.0 Support” for details.

=

To add an exhaust particle effect to an entity, use a command of the following form:

-exhaustEffect=<some particle system>
The following example is an entry for the frontmost vehicle shown in the scene above:

1 1225 0 0 0 26 Vehicle MTVR-MK23.M2.US.desert.hpy
—exhaustEffect=exhaust-MTVR-MK3.par -tracks(0.000000,0.000000)
—-dustEffect=dust.par 0.000000,0.000000,0.000000

An exhaust particle system will generate particle emissions when the entity's power-plant
appearance bit is turned on.

In cases where you need to use a single exhaust effect for multiple entities, the .par file need
not have the origin defined. Instead, you can use a single effect and define the origin right

5-6 MVRsimulation VRSG User’s Guide

after the effect listed in ModelMap.ini entry. For example, the following entry produced the
example that follows it:

Sarvatra.IN.desert.hpy -exhaustEffect=exhaust generic.par
3.17,0.57,-3.29 -exhaustEffect=exhaust generic.par 3.17,-0.57,-3.29

T g
. — il

You can add two exhaust particle effects to an entity. For example:

1 1225 0 0 0 26 Vehicle modelfile.hpy modelname -
exhaustEffect=exhaust-LCVP-left.par -exhaustEffect=exhaust-LCVP-
right.par -tracks

Adding wakes

VRSG’s 3D ocean simulation automatically generates wakes for entities that are assigned DIS
domain 3 when the Enable Wakes option is selected on the Oceans tab on the VRSG
Dashboard.

For modeling the wakes of sea vessels on non-ocean bodies of water (lakes, rivers, and so on)
85 meters and higher above sea level, using VRSG’s 2D legacy water you can add a
polygonal wake effect. To assign the default polygonal wake effect to a model, add the
+wake command to the ModelMap.ini entry. For example:

1 3 225 * » * * Yehicle Fishing-Vessel.US.grey.hpy +wake
To customize the wake effect for a particular vessel, you use the +trail command instead,
with the following syntax.

+trail (numPts, samplelInterval, color, initialWidth, incrWidth,
offset

e numPts defines the number of data points (vertices) to use to construct the wake.

e samplelInterval defines how often the model's position is sampled, in seconds.
sampleInterval and numPts combined define the length of the wake, and its fidelity
(degree of quantization). The values for the default wake are 100 and 1.0 respectively.
Slower moving entities can be sampled at a larger sampleInterval.

Chapter 5 Configuring Models and Events 5-7

e color defines the color of the wake. You provide this value in packed hexadecimal
notation in the form AARRGGBB. For example, the value ff0000ff creates a blue trail.
The value of the default VRSG wake is c8c8c8c8 which means 200 for alpha, red, green,
and blue.

e initialwidth defines the width in meters of the wake at its head. The default wake
uses a value of 5.0 meters.

e incrwWidth defines how fast a wake grows in width. The width of a wake at L meters
linear distance from the head is given by initialWidth + L*incrWidth.

e offset defines where the wake begins along the model's forward (X) axis. For sea
vessels a wake typically begins at the center of the entity’s mass.

For example:

1 3 225 * » * * Vehicle LCAC.US.grey.hpy

+trail (100,1.0, fac8c8dc,5.0,0.5,10)

Although the +wake command is ignored when the 3D oceans Enable Wakes option is turned
on, you might want to use this command for all sea entities to ensure your scenario can run
with wakes trailing sea vessels if 3D oceans are turned off. (An example of this can be found
in the KismayoAmphibious scenario that is installed with VRSG.)

Adding track or wheel impressions

You can direct VRSG to simulate a track or wheel impression to appear behind a tracked or
wheeled vehicle entity -- or a footprint impression to appear behind a character entity — as
those entities are in motion. To enable the impression, add the command “-tracks” to the
model’s entry in ModelMap.ini.

For example:
1122511 0 0 Vehicle M1IA2.US.desert.hpy -tracks

For most tracked and wheeled vehicles, VRSG can automatically determine the width and
offset of the tracks by inspecting the model's geometry, and will use a generic track or wheel
texture for the impression. You can override the default texture and specify another texture by
adding the command -trackTexture= in the ModelMap entry.

1122511 0 0 Vehicle M1IA2.US.desert.hpy -tracks
-trackTexture=my tracks.rgb

Several textures are delivered with VRSG that can be used for track, wheel, and footprint
impressions; the textures are installed in the directory \MVRsimulation\VRSG\Textures.
Examples of these textures include treadmark wheeled.tex, track-human-foot.tex, and track-
animal-hoof.tex.

5-8 MVRsimulation VRSG User’s Guide

If you encounter an issue with the width and offset that VRSG computes for the track or
wheel impression, you can explicitly specify the outer and inner extents of the tire with
-tracks (innerEdge, outerEdge). This example defines tracks for the right front tire:

1 1225 6 1 0 0 Vehicle M1035.US.desert.hpy -tracks(1.075,0.75)

You can measure extents of the wheels or tracks of the model in Model Viewer by positioning
the cursor at the outer edge of the right front tire, noting the value and then positioning it at
the inner edge of the tire.

@ MVRsimulation Model Viewer = B X
File View Setup Switches Articulated Parts About.

Positioning the
cursor at the
outside edge of
the wheel and
then at the
inside edge to
obtain the
values for the
tire impression.

@ MVRsimulation Model Viewer
IFM? View Setup Switches Articulated Parts About.

M\ simulation

Use the -trackoffset command to control the track’s origin along an entity's x-axis. This
command is useful in cases where you want to explicitly control the start position for
rendering tracks, such as when an entity is attached to another entity and you want to show
the tracks of the trailing entity. An example of this can be seen in scenarios that are delivered
with VRSG that take place on the Afghanistan terrain, where pattern of life activities on the
street show donkeys pulling carts. The donkey and cart are built as a single model, and VRSG
must be directed where to begin the wheel tracks.

The following ModelMap.ini entry controls the tracks made by the wheels of the cart:

3 1 0 0 64 0 5 Human animal-donkey-00l-cart.hpy
-tracks (1.400000) -trackTexture=track-donkey-cart.tex
-trackAlpha=0.700000 -trackOffset=-2.500000 -delayedLoad

Chapter 5 Configuring Models and Events 5-9

In this example, the offset begins 2.5 meters behind the model’s x-axis origin, which again
you can determine in the Model Viewer, as shown earlier.

M st
For entities that create a single impression, such as motorcycles or human or animal
footprints, use the following single-track syntax:
-tracks (width)
For example:

3 1225 0 0 0 56 Human human-somalia-002.hpy -tracks(0.300000)
-trackTexture=track-human-boot2.tex

A single track impression of the given width is created behind the entity, and centered on the
entity.

The intensity of a track impression can be modulated with:

-trackAlpha=N

Where N should be a value greater than zero and less than 1. For example, a value of 0.5
would reduce the track intensity by 50%.

Track impressions persist for an hour, or until they consume a certain amount of resources.

Attaching a model to another model

You can attach a dynamic moving model to another dynamic moving model via a ModelMap
entry, with the —attachModel command. This command is useful for cases such as attaching
radars or vehicles to ships, or drivers or pilots to vehicle entities. Currently one attached
model is supported per ModelMap entry.

This attachment method improves on the older method of attachment via an entry in the
cultural feature file (which is still useful for attaching a model to a model that is in the
cultural feature file and described later in this chapter).

To place a human character inside a vehicle, specify the model and the intended animation
(driver, passenger, gunner). The \MVRsimulation\VRSG\Animations directory contains a set
of driver, passenger, and weapon-holding animations for characters added to vehicles. The
placement of the character inside the vehicle is handled by the BVH animation. For example:

5-10 MVRsimulation VRSG User’s Guide

* & & x x x * yehicle M1163.US.desert.hpy -attachModel= human-us-
soldier-040.hpy -bvh=M1163 Driver.bvh

To attach a vehicle to another vehicle (such as a towed howitzer as shown below), you must
specify an attachment offset. For example:

* & & x x x % yehicle M998A1.US.desert.hpy -attachModel=
M777.US.desert.hpy —-attachOffset=-8.2,0,0 -appearance=100000

The attachment offset is expressed as:

—attachOffset= x,y,z

where x, y, z are the intended coordinates of the attachment point on the attached/parent
model. To obtain the coordinates of the attachment point, open the model in the Model
Viewer and place the cursor at the intended attachment point. Press the “P” key on the
keyboard. This action copies the X, y, z coordinates of the cursor position to the Windows
Clipboard. (See the chapter “Previewing Models, Effects, and Terrain” for information about
the Model Viewer.)

You can also specify an appearance via the -appearance command in the entry. (Many
artillery pieces require an appearance to put them into the towed state.) In the ModelMap
entry, when "-appearance="is placed before "-attachModel", the appearance applies to the
parent model; otherwise the appearance applies to the child model.

When the parent entity is destroyed, the attached entity (vehicle or human) is no longer
displayed.

Ground clamping and ocean clamping

You can force certain models to be ground-clamped by adding the -groundC1lamp command
to their entries in the ModelMap.ini file. If ground clamping is enabled on the Dashboard’s
Preferences tab, all enumerations are ground clamped, and this command is not necessary. By
using the ~groundClamp command in the ModelMap.ini, and leaving ground-clamping
unselected on the Preferences tab, you can restrict ground clamping to particular
enumerations. For example:

1122511 0 0 Vehicle MIA2.M2.US.desert.hpy —-groundClamp

VRSG automatically ocean-clamps any entity whose DIS-enum is in the surface domain. Use
the ~oceanClamp command in the ModelMap.ini for entities in other domains to have them
float/bob in the ocean waves.

Chapter 5 Configuring Models and Events 5-11

Highest-elevation clamping

You can clamp an entity to the highest elevation at a given X-Y location by adding the
-roofClamp command to its entry in the ModelMap.ini file. This command is useful for
forcing characters to clamp to rooftops in scenarios that involve JTAC or sniper activity.

Disabling a model’s orientation clamping

To disable orientation clamping on a per-model basis, use the -noorientclamp command.
This command selectively overrides the global Ground Clamp Orientation setting on the
Dashboard’s Preference tab. An example use case might be a wind sock model, where it is
desired that the model is aligned vertically with the gravity vector, not with the terrain surface
normal. For example:

51 225 47 1 2 0 Vehicle windsock-001l-white.hpy -noorientclamp

In the above example, VRSG would honor the simulation’s provided pitch and roll for the
model, and not override to make them conformal to the local terrain surface.

Specifying a model’s timeout period
A global DIS timeout period is specified on the Advanced Startup Parameters dialog box. If
an EntityStatePDU is not received from the entity in the given period, that entity is removed

from the simulation. This global timeout period can be overridden on a per-entity basis using
the “~timeout” command. For example:

1122511 0 0 Vehicle MIA2.M2.US.desert.hpy -timeout=20

In this example, the M1A2 model will timeout after 20 seconds, overriding the global timeout
settings for all other entities.

Scaling models

You can change the rendered size of a model by providing the -scale command. The
following example would render the M1A2 model at 120% its normal size:

1122511 0 0 Vehicle M1IA2.M2.US.desert.hpy -scale=1.2

The -scale= command applies a scale factor regardless of range. To scale a model as a
function of range, you use the -scaleFunction= command. Defining the scale of a model
as a function of range is useful in compensating for the limited acuity associated with
computer-generated graphics. The -scaleFunction= command takes four parameters in the
following form:

-scaleFunction=rl,sl,r2,s2

where rl is the range where the scale factor s1 is applied; for ranges below rl, the scale factor
of sl is used; for ranges beyond r2, the scale factor s2 is used. For ranges between rl and r2,
the scale factor is linearly interpolated between s1 and s2. Note r1 must be less than r2. For
example, if the model is acceptable for viewing out to 1km, but you want the model to scale
slowly in size until it reaches two times its normal size at 4km, you would use the —
scaleFunction command as shown:

-scaleFunction=1000,1,4000,2

Scaling a model's LOD switch points

You can scale the ranges of a model's LOD switch points using the -1od scale command.
The following example would scale the model's switch points by 200%:

5-12 MVRsimulation VRSG User’s Guide

11225110 0 Vehicle MIA2.M2.US.desert.hpy -lod scale=2.0

Note that this command can be used in the ModelMap.ini or in a cultural feature file (vrsg.clt)
as described later in this chapter.

Forcing a model to display at a lower-detail LOD

In some cases you might want to limit the highest level of detail displayed for a given model.
Doing so may be useful if you are using older hardware not capable of rendering a given
model at sufficiently high frame rates. The -minLODRange command prevents a model’s
computed LOD range from going below a minimum value, which keeps the model from using
the (highest) levels of detail associated with LOD ranges below that minimum. For example:

1122511 0 0 Vehicle MIA2.M2.US.desert.hpy -minLODRange=2000

In the above example, the model would never be displayed at a finer level of detail than the
2km or greater representation. You can use MVRsimulation’s Model Viewer utility to
determine a model’s LOD switch points.

Scaling a model’s RADAR return intensity

The RADAR return intensity for a given model can be uniformly scaled using the
-radarReturnScale command. For example:

1122511 0 0 Vehicle MIA2.M2.US.desert.hpy -radarReturnScale=0.5
In the above example, the model’s RADAR return intensity would be reduced by 50%.

Specifying the model type for CIGI

CIGI does not use the 7-tuple DIS enumerations to identify a model; instead, CIGI uses a
scalar integer namespace to identify the type of model. You can specify the entity type
identifier by using the -t ype= command. For example:

112252 10 0 Vehicle M1A2.M2.US.desert.hpy -type=12

In the above example, a CIGI host would use 12 in the entity type field of the Entity Control
packet to refer to the M2A3 model.

When you use CIGI, consider providing a valid DIS enumeration for the model. Doing so
provides additional documentation and enables VRSG to determine the model's domain (land,
sea, air).

Adding additional appearance bits

You can add additional appearance bits to what an entity is providing in the DIS Entity State
PDU by using the -appearance= command. The value provided will be logically OR'ed
with the appearance bits being transmitted by the entity. This feature is useful for turning on
certain switch states for a model. An example use-case would be the power-plant status bits
(0x400000). Most MVRsimulation aircraft models use this bit to animate props or rotors. If a
simulation is not stimulating this bit when the vehicle’s engine is on, you could force this bit
on with the following command:

1 2 225 6 1 0 0 Vehicle AH-64A.US.green.hpy -appearance=400000

The value provided must be in hexadecimal, without the preceding “0x” notation.

VRSG supports 64-bit appearance masks, which enables advanced features of newer
MVRsimulation models to be assigned to bits that are not used by SISO/DIS.

Chapter 5 Configuring Models and Events 5-13

You can find and identify the appearance bits for an MVRsimulation model’s switch states
when you load the model in the Model Viewer, as described in the chapter, “Previewing
Models, Effects, and Terrain.”

Specifying the initial state of an articulated part

Specify the initial state of an entity’s articulated part with the -setPartvalue command.
This command enables you to configure the degree-of-freedom (DOF) for an articulated part.

The syntax of the command is:
-setPartValue (partlId, value)

partld is the ID from the set of DIS protocol enumerations, which are described in the
document available in the \MVRsimulation\VRSG\Models directory (SISO-REF-010-2023
Enumerations v31.pdf). For example, part ID 4096 is the primary turret, 4416 is the main
gun, and so on.

partld identifies the part and the degree-of-freedom being controlled. The value you provide
for partld is the part code plus the DOF identifier taken from the following table:

Degree of freedom Code
X translation 5
X translation rate 6
Y translation 7
Y translation rate 8
Z translation 9
Z translation rate 10
Azimuth 11
Azimuth rate 12
Elevation 13
Elevation rate 14
Roll 15
Roll rate 16

5-14 MVRsimulation VRSG User’s Guide

For example, to initially set a model’s turret (4096) azimuth angle (11) to 1.5 radians, add
4096+11=4107, then use the command -setPartValue (4107,1.5).

You can use multiple -setPartvValue commands in one entry in ModelMap.ini to set the
values for multiple parts of a given entity.

The -setPartvalue command is useful for initializing an articulated part to some
reasonable behavior before the simulation controls the part (or in case the simulation does not
control the part). As soon as the simulation updates the part, it takes over control. By using
this command you can get radar dishes spinning, guns pointed in a certain direction, turrets
initially positioned, and so on.

Replacing a destroyed culture model with another model

A cultural feature model can be replaced with an alternate model to show its destroyed state.
For example, you could replace a destroyed building model with a model of a pile of rubble.
The alternate model will be automatically scaled to approximate the mass of the original
model it replaces. This feature can effectively make any building destroyable.

The DIS EntityStatePDU has a field for alternate entity type. To use this feature, specify in
the alternate entity type field the enumeration of the model to use when the entity becomes
destroyed. This alternate entity type enumeration should be mapped to the desired model in
ModelMap.ini (such as the model rubble-005.hpy).

This feature applies only to entities of the culture kind (kind = 5). When VRSG sees a culture
entity with appearance bits indicating it is destroyed, VRSG will use the alternate entity type
to choose the model to display. The alternate model automatically scales appropriately so that
its mass is similar to the mass of the original model it is replacing (that is, a large building
will be replaced with a large pile of rubble).

Adding a rotor wash effect

You can add a rotor wash particle system to a helicopter entity by specifying the command -
rotorWashEffect= <effect name>. This command identifies a particular rotor wash
particle system. VRSG will use this particle system to create the rotor wash effect when the
aircraft is close to the ground or ocean. MVRsimulation provides the file
\Effects\helo_rotor.par as the default particle system for rotor wash. You can create
customized versions of this file and map it to different enumerations for different rotor wash
effects on different airframes.

For example:

1 2 225 0 0 0 26 Vehicle UH-1Y.US.grey.hpy
-rotorWashEffect=helo rotor.par

Chapter 5 Configuring Models and Events 5-15

This next example shows a rotor wash effect on VRSG’s 3D oceans.

1 2 225 0 0 0 13 Vehicle MH-60R.US.grey.hpy
-rotorWashEffect=helo rotor.par —-delayedLoad

Adding light points to a model

You can add light points to a model with the -1ightPoint= command using the following
syntax:

lightPoint=X,Y,Z,size,minPixelSize,maxRange, color, appearanceMask,
period, timeOn, azimuth,elevation, horizontallLobeAngle,verticallLobeAngle

5-16

MVRsimulation VRSG User’s Guide

e Thex, v, and z fields identify the light’s position in model-space in meters, using the
DIS and CIGI convention of X forward, Y right, z down.

e size conveys the radius of the light in meters, and the minPixelSize controls the
smallest size the light will display as, given in pixels.

e color isspecified as a hexadecimal value in AARRGGBB format, an 8-digit hex
number, where the valid range for each component is 00..FF. The AA byte contains the
alpha value, or intensity, of the color. A value of 00 would be fully transparent, and a
value of FF would be the color at full intensity. If you use just 6 digits, the alpha
(intensity) will be zero.

e appearanceMask indicates which bit of the EntityStatePDU appearance field is used to
turn on the light. If zero, the light is always on.

e periodand timeOn specify the frequency and duty cycle of flashing lights. For
example, for a light to flash at 2 Hz, use a period of 0.5. A timeOn of 0.25 of would have
the light be on half of its flash cycle. For non-flashing lights, use equal values for
periodand timeOn.

For directional lights, azimuth and elevation control the light’s direction, given in degrees
relative to the entity they are attached to. The horizontalLobeAngle and
verticalLobeAngle fields control the lobe size of a directional light. For omnidirectional
lights, all fields past appearanceMask may be omitted, and will default to non-flashing
omni-directional lights.

This example puts the green light on the tip of the F16 tail:
-lightPoint=-5.6,0,-3.4,0.1,6.0,5000,££00££00,0,1,1,0,0,180,180

To add multiple light points to entities, consider adding the light points via a model attribute
JSON file. This method is described later in this chapter in the section “Adding and editing
model metadata.”

Adding light lobes to a model

A light lobe illuminates anything that falls inside its cone of influence. Light lobes illuminate
on entities that have the SISO DIS appearance bit set for headlights on a ground domain
vehicle or a flashlight on a human character entity.

When the headlights bit is set for a ground-domain entity, VRSG automatically attaches two
light lobes to the front of the vehicle, using the bounding dimensions to determine
approximate location of the light origins. By default the lights have an illumination range of
30 meters, meaning their effect will be attenuated to zero at a range of 30 meters from the
light origin. Lights will be rendered out to 60 times their illumination range. There are two
parts to headlights in MVRsimulation ground vehicle models. The actual headlight bulb on
the model is something built into the model. This is emissive geometry so it glows in the
dark. If a model supports these, you will see the Headlights option in the Switch menu when
viewing the model in Model Viewer. The simulation setting the headlight bit causes the
emissive geometry to be displayed for the model. The other part is VRSG's automatic
attachment of light lobes to ground-domain entities that have their headlight bit set. (A model
need not have emissive headlights built into it for the light lobes to work, but it looks better
when it does. Otherwise the scene becomes illuminated from no clear source of light.)

Chapter 5 Configuring Models and Events 5-17

For a human character, the light lobe is placed at the handheld-item’s “weapon” location, and
oriented along the forward axis of the weapon. The weapon type is not enforced. If the
character holds a flashlight and has the flashlight bit on, a light lobe will be attached to it,
(independent of what the actual “weapon” the character is holding).

Note: A light lobe can be attached to an entity via CIGI, using MVRsimulation’s component
control for this purpose. A light lobe can also be attached to a static model or an entity via a
model attribute JSON file, as described later in this chapter in the section “Adding and editing
model metadata.”

Summary of available commands for ModelMap.ini

The following commands can be added to a ModelMap.ini entry to modify the behavior of the
loaded model:

Command Description

-appearance=x Specifies additional appearance bits to be
OR’ed with the model's provided
appearance.

-attachModel= Attaches a dynamic moving model (entity)
to another, via an attachment point.

+contrail Adds a contrail (EntityType must be domain
2, air)

-attachOffset=x,y,z Specifies the coordinates of the attachment

point, measured in the coordinate system of
the entity being attached to. Values are in
meters, with the DIS/CIGI axis convention
of x=forward, y=right, z=down.

-contrailEffect= effect name Specifies a contrail effect to associate with
an aircraft or missile model.

-darkenRange= Darkens the color of air-to-air targets as a
function of range, to make models detect-
able against the sky background. Range
given specifies the range at which the model
will become completely black. Up to this
range, the model is incrementally darkened
using a non-linear function of range.

-delayedLoad Directs VRSG to not pre-load the model at
startup; only load the model if it appears in
the VRSG session.

-dustEffect= effect name Specifies a dust effect to associate with a

ground-based model.

5-18 MVRsimulation VRSG User’s Guide

Command

Description (continued)

-flameEffect= effect name

Assigns a custom effect for a flaming
vehicle.

-forceShadow Produces a ground shadow for aircraft
similar to the planar shadows for ground
vehicles.

-groundClamp Ground clamps all instances of this model

type.

-launchFlash=radius

Automatically attaches an omni-directional
light lobe to a munition entity when the
entity has the launch flash appearance bit
set (bit 16, 0x10000). A light lobe is created
to illuminate the scene around the entity by
the given radius. Useful for night time
scenarios where it is desired that missile
launches illuminate the surrounding scene.

-lightPoint=

Adds a light point to a model; see above
description for details.

-lod_scale=N

Scales a model's LOD switch point ranges
by the ratio given by N.

-material=N

Assigns an explicit material code to all
polygons in a model; for physics-based IR
simulation.

-minLODRange=

Places an upper-bound on the highest LOD
displayed for a given model.

-nocolldet

Makes models of this type invisible to
collision detection. VRSG will not consider
the model when testing collision segments
against the scene. Useful to apply on
bullets, tracers, or other types of entities that
VRSG should not waste cycles determining
collisions against.

-noorientclamp

Disables orientation clamping of models on
a per-enumeration basis.

-noSpecular

Disables specular lighting effects for a
given model.

Chapter 5 Configuring Models and Events 5-19

Command Description (continued)

-oceanClampOffsetZ=7.zz Offsets the position of an ocean-clamped
entity upward by this amount, in meters.
Positive values cause a sea vessel to "ride
high" as if it were lighter than usual, and
negative values will cause it to "ride low" as
if it were heavily loaded.

-oceanDynamicsScale=S.ss Scales the responsiveness of an
oceanClamped entity's dynamics. Values
larger than 1.0 will make the entity's
dynamics more responsive; values smaller
than 1.0 will dampen the entity's dynamic
response. Small vessels have larger values
than large ones.

-oceanDisableBowParticleEffect Disables the bow wake splash effect.
-radarReturnScale= Modulates a model’s Radar return intensity.
-roofClamp Elevation clamps a model to the highest

point at a given location, which can include
culture models. Useful for clamping human
characters to rooftops.

-rotate=yaw,pitch,roll Applies an additional rotation to a model
before rendering. Angles are given in
degrees.

-rotorWashEffect=name Specifies a rotor wash effect to apply to a

helicopter model.

-rubble= Specifies an alternate model to use for the
destroyed state. Useful for buildings as most
do not have an explicit destroyed state.
They can specify a rubble model from the
model library. The rubble model will be
automatically scaled to have similar mass as
the model it is replacing.

-scale=N Scales the model by the ratio given by M.
For example, a value of 2 will double the
model's size.

5-20

MVRsimulation VRSG User’s Guide

Command

Description (continued)

-scaleFunction=rl1,s1,
12,82

Defines scale for a model as a function of range; parameter r1l
is the range where the scale factor sl is applied. For ranges
below rl, the scale factor of s1 is used. r2 is the range where
the scale factor s2 is applied. For ranges beyond r2, the scale
factor is limited to s2. For ranges between rl and r2, the scale
factor is linearly interpolated between s1 and s2 (r1 must be
less than r2).

-setPartValue(partld,
value)

Sets the initial DOF rate or angle for an articulated part of a
model.

-shadowOffset=

Specifies a vertical offset for projected planar shadows.
Normally they project to the model’s Z=0 plane. This setting
can be used to force shadows to a different point along the
model’s Z axis.

-skinnedGloves

Associates the specified character model with the gloved hand
models with articulated fingers (skinnedGloveLeft-01.hpy and
skinnedGloveRight-01.hpy).

-skinnedHands01,
-skinnedHands02

Associates the specified character model with the ungloved
hand models with articulated fingers (skinnedHandLeft-01.hpy,
skinnedHandRight-01.hpy, skinnedHandLeft-02.hpy, and
skinnedHandRight-02.hpy).

-smokeEffect= effect name

Assigns a custom effect for a smoking vehicle.

-terrainModel Marks a model to be considered for elevation lookup queries.
-timeout= Overrides the DIS timeout period for an entity.
-trackAlpha=N Modulates the track intensity by the given value (e.g. 0.5 for

50%).

-trackOffset=N

Controls the track’s origin along an entity's x-axis.

-tracks

Creates a track or wheel impression behind a moving ground
entity.

-trackTexture=t

Used with —tracks, specifies a custom texture to use for a track
or wheel impression.

Chapter 5 Configuring Models and Events 5-21

Command Description (continued)

-translate= x,y,z Moves a model's origin to a new location.

-type= Specifies an entity model type identifier for the CIGI protocol.
-uvw= Assigns explicit thermal properties to a model.

+wake Adds a wake to a sea vessel model on VRSG’s 2D legacy water

surface. (EntityType must be domain 3, surface vessels)

-wakeAmplitudeScale= Scales the amplitude of wakes behind the entity in 3D oceans.
S.ss An S value of 2.0 makes wake-waves twice as tall, and 0.75
makes them 75% as tall.

Examples of using the commands for handling entities on VRSG’s 3D oceans can be found in
the Kismayo Amphibious scenario that is installed with VRSG.

Troubleshooting a missing entity

You can capture a snapshot (written to an ASCII file) of all dynamic entities in the current
scenario rendering in VRSG. This file is useful for debugging purposes and for identifying
any issues in your Modelmap.ini file. Press Shift-F4 to capture all the entities with their
enumeration and model ID, at their current position and orientation. The ASCII file is saved
in VRSG’s installation directory as dynamic_models_snapshot.clt. Each dynamic model is
enumerated with its DIS ID, 7-digit DIS entity type, position, orientation, name of 3D model
in use, and DIS appearance mask.

If an entity is not mapped to any entry in the Models\ModelMap.ini file, it will default to the
beach ball model designation described at the end of the file, and display the beach ball
model:

* x % % % % * Vehicle beach ball.hpy

The beach ball default model (shown in the examples on the next page) is helpful for
resolving entity enumeration issues. For example, suppose you identified in the onscreen Help
the enumeration of an unmapped entity. You could edit the \Models\ModelMap.ini file to
make an association for the enumeration 1:1:0:0:0:0:0 that maps to either a vehicle in the list
or to a new model you have added.

You can edit the ModelMap.ini file while VRSG is running; you do not need to terminate
your VRSG session to edit the file. Edit the file while VRSG is running and then, press
Ctrl-M to have VRSG reload the ModelMap.ini file.

MVRsimulation strongly recommends that you do not remove the beach ball mapping from
the end of the ModelMap.ini file. If VRSG cannot resolve an enumeration to a visual model,
the entity will be ignored. Having the beach ball entry ensures that a visual indication of the
missing entity will be rendered, as shown below.

5-22 MVRsimulation VRSG User’s Guide

Indicates an
unresolved
enumeration /
missing entity.

The beach ball in the scene above indicates that a vehicle entity is missing from the convoy.
When you attach to the beach ball, the attachment message indicates the entity mapping in the
Modelmap.ini:

Enumeration of
unresolved entity.

Checking the VRSG error log (VrsgError <machine name> .txt) is another way to identify
the missing model:

Failed to locate model file M-ATV-SXB-CAGE.M153.US.desert.hpy

If you do not see DIS entities in the VRSG scene, first check the All Entities list box on the
Dashboard’s Attach Options tab. If this list box is empty, VRSG is not seeing your DIS
entities on the network. This could be due to a variety of possible reasons:

e You are using BSI MACE and your MACE mission has not been started.

e VRSG and the simulation are not in agreement on exercise ID. In VRSG, you can set the
exercise to 0 to allow all exercises.

Chapter 5 Configuring Models and Events 5-23

e The DIS UDP ports are mismatched. The VRSG UDP setting (default setting is 3000)
must match the UDP setting used by the simulation.

e The Site and Host (Host is referred to as “App” in MACE) values must not be the same in
VRSG and the DIS simulation. At least one of those values must be unique. For example,
VRSG can be Site 1 / Host 101 and MACE can be Site 1 / App 100, or VRSG can be Site
1 / App 100 and MACE can be Site 2 / App 100 and. But the values of both settings
cannot be identical.

e The networked machines are not physically reachable. Try pinging one machine from the
other.

o The Windows firewall is blocking VRSG, the DIS simulation, or both applications.

Creating threat domes

In the ModelMap.ini file, you can use the model class Bubble or Cylinder to create a wire-
frame threat dome that represents the detection and lethal ranges of a Surface to Air Missile
(SAM) or similar threat system.

In the ModelMap.ini file, map the enumeration using the model class Bubble or Cylinder
and five parameters that describe the horizontal and vertical radius of the dome in meters, and
the color of the dome in terms of the red, green, and blue components of the intended color.
The expected ranges of the color values are 0 (least intensity) to 255 (maximum intensity).

Bubble horizontalRadius verticalRadius red green blue

The following example creates a yellow threat dome with a horizontal radius of 1500 meters,
and vertical radius of 1000 meters:

9 1 222 * * * 1 Bubble 1500 1000 255 255 0
This next example creates a red threat dome with a horizontal radius of 500 meters:
9 1 222 * * * 2 Bubble 500 1000 255 0 0

To create a cylinder variation of a threat dome, use the keyword Cylinder instead of
Bubble. For example:

Crotale MEZ

|

5 0 0 6 7 0 22 cylinder 10193 5854 150 100 0

! SAll MEZ

5 0 0 6 7 0 20 cylinder 30390 21340 200 100 50
! 7SU234 MEZ

5 0 0 6 7 0 24 cylinder 2052 3659 200 0 150

A threat dome does not have to be associated with a DIS entity. You can also place a dome as
a static model in a cultural feature file (vrsg.clt) as described later in this chapter.

5-24 MVRsimulation VRSG User’s Guide

Mapping animations to 3D animated characters

This section describes how animations are associated with VRSG’s 3D animated characters.
The VRSG release provides a large set of pre-built animations which should accommodate
the most common uses, so it is not likely that you will need to edit the animation
configurations.

VRSG’s animation files, which are in the BVH motion capture format, are located in the
Animations subdirectory. BVH animation files are ASCII, but are generally not edited by
hand. A third-party tool, such as Alias MotionBuilder, is used to author BVH animations.

About entries in the Animation.ini file

The mapping file Animations\AnimationMap.ini is used to associate DIS lifeform entity
appearances with animation clips. Each animation clip is stored in a separate file in the
Animations folder with the .bvh extension. The syntax of an AnimationMap.ini entry is:

<mask> <value> <bvh-file-name>

The mask is a 32-bit hexadecimal number that VRSG uses to select which bits of the DIS
EntityStatePDU appearance are relevant for choosing the animation. The value is a 32-bit
hexadecimal number that matches the result of the bitwise AND of the mask and the
appearance mask. For example:

0x00£0000 0x0010000 standby.bvh

In this example, the mask selects the 4 bits of the appearance mask that correspond to the life
form state of the entity. If the lifeform state bits are 1, the entity is indicating it is in a
standing posture. The above entry maps this result to an animation for standing.

Entries in AnimationMap.ini are processed top-to-bottom, so when a match is found that
animation is used. Therefore more specific masks should be placed towards the top of the file,
and more general ones towards the bottom of the file. For example, an entry that looked at
both life form state bits and primary weapon state bits should precede an entry that looks at
life form state only, for example:

0x30f0000 0x2010000 standby rifle deployed.bvh

0x30£0000 0x3010000 standby rifle firing.bvh

0x00£0000 0x0010000 standby.bvh

This example shows a correct order. If the third entry were first instead, then VRSG would

catch all primary weapon states since the mask does not consider these bits. This would cause
the deployed and firing animations to never be engaged.

Chapter 5 Configuring Models and Events 5-25

This example loads standby _rifle_deployed.bvh, standby rpg_deployed.bvh, and
standby_pistol deployed.bvh. Any other animation files in the Animations directory that
matched the regular expression would be loaded for that single entry.

When VRSG finds an entry in AnimationMap.ini that is appropriate for the given appearance
mask, VRSG scans the set of animations given for that entry looking for one that matches the
type of weapon the character entity is using. If the entity in the above example were using a
weapon of type ‘rifle’, the animation standby rifle deployed.bvh would be chosen. Similarly,
if the entity used a weapon of type ‘pistol’, standby pistol deployed.bvh would be chosen.

Different types of weapons generally require unique animation clips to support them. For
example, firing a rifle requires different hand positioning than firing a pistol or an RPG.
VRSG addresses this requirement by allowing multiple animations to be loaded for a given
entry in AnimationMap.ini. The animation names given in AnimationMap.ini can contain an
asterisk (¥) as a wildcard to represent multiple weapon types. For example:

0x30£0000 0x2010000 standby * deployed.bvh

The type of weapon that is used for selecting animations is stored in the weapon model file.
For example, the first line of an HPX file contains the command —weaponType=<name> to
identify the type for the weapon model. If this command is absent, a type of ‘rifle’ is
assumed. As an example, the header line of an RPG model would appear as follows:

HPXV002 -weaponType=rpg

VRSG does not actually enforce the weapon type that is stored in the HPX file, although the
types ‘rifle, ‘rpg, and ‘pistol’ are used by convention. Instead, VRSG uses this label to find
the appropriate animation by substituting the weapon type in the animation file names.

This information is important if you plan to add weapons and/or animations to VRSG using
models you have converted to HPX models. The weapon models provided with VRSG have
already been correctly assigned their weapon type and require no user intervention.

You can have VRSG randomly select an animation from a group of animations by listing
them all in one appearance mapping entry in the Animation.ini file. This can be useful if you
have a set of character animations performing essentially the same action but slightly
differently. For example, you could create an appearance mapping entry in the file that
mapped an appearance code to standby talk-001.bvh, standby talk-002.bvh, standby talk-
003.bvh, standby _talk-004.bvh, standby_talk-005.bvh (all in MVRsimulation’s library of
animations) and then associate the appearance to several characters standing around talking
with each other.

An example of a similar setup can be found in the AnimationMap.ini file itself. VRSG’s
animation library contains 10 total dead animations of varying body positions on the ground
that result from a range of actions like collapsing quickly or falling over from a blast. The
AnimationMap.ini lists them all with the deceased appearance code, as shown in the
following entry:

0x0000018 0x0000018 dead.bvh dead-0.bvh dead-45.bvh dead-90.bvh dead-

135.bvh dead-180.bvh dead-225.bvh dead-270.bvh dead-315.bvh dead-
360.bvh

5-26

MVRsimulation VRSG User’s Guide

(The animations are named by entity-relative degree heading.) VRSG will pick a .BVH from
the list at random. VRSG uses the detonation blast information to determine which direction
entities fall over and then maps the corresponding animations. You can also associate an
explicit animation by name to a character, to have it fall over in a direction consistent with
impact.

Mapping virtual world events

VRSG is delivered with over 175 effects files, located in the \MVRsimulation\VRSG\Effects
directory. The \Effects directory contains several kinds of effects:

¢ Billboard-based effects (.eff) for rotating 2D textures such as simple explosions. VRSG
also contains an effect called flames.flm.

e Particle-based (.par) effects for smoke, dust trails, rotor wash, explosions, and so on.
VRSG also contains 10 solid particle (.spf) effects.

e Dynamic craters, using VRSG’s capability to dynamically deform terrain surfaces to
represent craters resulting from munitions impacts.

e Cloud files (named cloud*.cld) for different levels of density and sparseness of legacy
clouds.

Effects can be free-standing or attached to an entity. Free standing effects are for explosions,
smoke grenades, and so on. With these effects, the particle emitter source stays where it was
established; you cannot move it. As the particles are generated over time, they can be affected
by changes in wind conditions. With an attached effect, the particle emitter moves with the
entity it is attached to. Common use of these effects are contrails, dust effects, and helicopter
rotor wash.

To move an effect that is normally free-standing, you must attach it to an entity. The entity
need not be associated with a visible 3D model; you could map the model to "empty.hpy"

Chapter 5 Configuring Models and Events 5-27

which would display no geometry. But you would gain addressability of the attached effect’s
location through the entity's position.

Billboard, particle, and solid particle effects (.eff, .par, and .spf) can be previewed in
MVRsimulation’s Model Viewer as described in the chapter “Previewing Models, Effects,
and Terrain.” They can be triggered by a detonation DIS PDU, added to the ClientMap.ini file
(described below) for use with a CIGI event or a scenario created in Scenario Editor, or
dragged directly onto the terrain in the VRSG visualization window.

The mapping information that in turn controls which effect is mapped to the appropriate DIS
enumerated event is contained in the initialization files FireMap.ini and DetMap.ini, located
in the \MVRsimulation\VRSG\Effects directory.

You can edit these two initialization files to change the defaults. To examine how a DIS event
such as a fire or detonation effect is generated in the virtual world through the relationship of
the FireMap.ini, DetMap.ini and the *.eff files, consider the contents of the following two
mapping initialization files:

FireMap.ini
FireMap.ini
Copyright 1997 - 2025 MVRsimulation, Inc. All rights reserved.
URL: www.mvrsimulation.com Email: support@mvrsimulation.com
This file can be used only with MVRsimulation’s Virtual Reality
Scene Generator (VRSG). The receipt of this file and your use of
the information contained herein is subject in all cases to your
agreement to the provisions governing “Additional Materials”
of the current MVRsimulation, Inc. license agreement found at:
https://www.mvrsimulation.com/howtobuy/license agreement policy.htm

This file allows you to associate munition firings with animation
sequences. A given warhead type may be mapped to a particular
special effect file. When a weapon is fired, this mapping file

is read top to bottom looking for a match, when one is found,

the associated special effect is rendered.

For any of the numeric fields, an asterisk '*' matches anything.

Syntax of entries:
kind domain country category subcategory specific extra effect-file

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
!
! GAU-4 20mm 20 mm
2 2 225 2 2 0 * muzzle.eff alO-fire.par -muzzleTip
!
!
2
!
!
2
!
!
2
!

120mm Tank 120 mm
2 225 2 13 0 * muzzle.eff muzzleBlast.par -muzzleTip
SA-2 Missile SA-2f Guideline Mod5
1 222 1 14 4 * launchSmoke-medium.par
Default catch-all, should be last entry in file
8 225 2 1 5 0 null.eff

* x x % % % % muzzle blast.par —muzzleTip

5-28 MVRsimulation VRSG User’s Guide

The -muzzleTip command in the FireMap.ini file directs VRSG to automatically compute
the position of the effect at the end of the barrel, and redirect the effect along the gun. This
effect is shown in the following image. The particle file used (muzzle blast.par) has the entry
"use dis_velocity 1" which allows the built-in direction to be overridden.

If a particle system has the "use dis_velocity 1" entry, the velocity vector in the Fire or
Detonation PDU will be used to steer the particles, unless -muzzleTip is used. If
-muzzleTip is used, the computed direction from the model's articulated parts overrides the
FirePDU velocity.

DetMap.ini
DetMap.ini
Copyright 1997 - 2025 MVRsimulation, Inc. All rights reserved.
URL: www.mvrsimulation.com Email: support@mvrsimulation.com

i

!

!

!

! This file can be used only with MVRsimulation’s Virtual Reality
Scene

! Generator (VRSG. The receipt of this file and your use of the
! information contained herein is subject in all cases to your

! agreement to the provisions governing “Additional Materials”

! of the current MVRsimulation, Inc. license agreement found at:
!

https://www.mvrsimulation.com/howtobuy/license agreement policy.html.

i

! This file allows you to associate munition detonations with

! animation sequences. A given warhead type and detonation

! result may be mapped to a particular special effect file.

! When a detonation occurs, this mapping file is read top to bottom
! looking for a match, when one is found, the associated special

! effect is rendered.
1

|

|

|

1

The result column corresponds to the detonation result field of the
Detonation PDU (See the DIS protocol for details).

For any of the numeric fields, an asterisk '*' matches anything.
Syntax of entries:

Chapter 5 Configuring Models and Events 5-29

! kind domain country category subcategory specific extra result
effect-

! file

i

!gun _round 5.56

2 8 225 2 1 = * % dustPuff-verySmall.par
12 8 225 2 1 5 o * ml6 impact.eff

|

!Smoke Grenade (Hand) M243 smoke grenade

2 9 225 2 41 1 1 * smokeRed.par

|

!Mk-82

2 9 225 1 14 0 0o * explosionSmokeDonut-large.par
explosionSmokeCenter-large.par explosionFlash-large.par

|

1155mm WP

2 9 225 2 14 13 o = smokeWhitePhosphorus.par
smokeWhitePhosphorus-mushroom.par

!

!SA-14 Missile

2 1 222 1 26 0 0o = explosionFlash-small.par
explosionSmokeAirburst-small.par

I
! Chaff

8 2 * 1 *ox *x chaffPuff.par
I

|

entity impact
I* * & & & & & 1 explosionl.eff
! entity proximte impact
Ix xSk ok ok & &k D explosion2.eff
! ground impact
I* * x x x x *x 3 explosion gnd.eff
! air impact
Ix * & & k& % 17 explosionl.eff
! water impact
Ix *x % % % & x 14 bullet.eff
|

* x x x x x % * explosion large.eff

|

!

! Default catch-all, should be last entry in file

* * * * * % * % explosionFlash-small.par
explosionSmokeDonut-small.par

You can direct VRSG to ground clamp certain detonation effects on a per-enumeration basis.
To do this, simply add the -groundclamp flag to the DetMap.ini entry following the effect
name. For example:

2 8 225 2 1 5 0 * explosion ground.eff —-groundClamp

The following options can be appended to entries in ClientMap.ini or DetMap.ini to control
the size of a detonation's impact on the 3D ocean surface.

5-30

MVRsimulation VRSG User’s Guide

Name Default Unit Description
value

-oceanlmpactMass= 0.0 kilograms Mass of the item impacting the

ocean surface
. Velocity at time of impact on the

-oceanlmpactVelocity= | 0.0 meters/second v p

ocean surface
. Di t fthe it i ting th

-oceanImpactDiameter= | 0.0 meters lameter of Fhe tiem impacting the

ocean surface

ClientMap.ini

The ClientMap.ini, another initialization file also located in \MVRsimulation\Effects, lists all
the effects that are available for a user to specify within a network packet. Available effects
are indexed in the order they appear in the file. In this case (as with CIGI or scenarios built
with Scenario Editor) instead of sending a DIS enumeration, the network packets specify an
integer for the effect to be triggered and that integer is used as an index into the list of effects
listed in the file. The ClientMap.ini file must match at both the sending and receiving end.

Creating billboard effects

The rendering information for a billboard-based special effect is described in an *.eff file.
You can fully control animation effects simply by placing the proper DIS enumeration
hierarchy with the required effect. You can also create your own effects.

The following flames.eff file illustrates the format of an effects (.eff) file:

16

-3 0 3 -6 0.0667 flameO.tex
-3 0 3 -6 0.0667 flamel.tex
-3 0 3 -6 0.0667 flame2.tex
-3 0 3 -6 0.0667 flame3.tex
-3 0 3 -6 0.0667 flamed.tex
-3 0 3 -6 0.0667 flame5.tex
-3 0 3 -6 0.0667 flame6.tex
-3 0 3 -6 0.00667 flame7.tex
-3 0 3 -6 0.0667 flame8.tex
-3 0 3 -6 0.0667 flame9.tex
-3 0 3 -6 0.0667 flamelO.tex
-3 0 3 -6 0.0667 flamell.tex
-3 0 3 -6 0.0667 flamel2.tex
-3 0 3 -6 0.0667 flamel3.tex
-3 0 3 -6 0.0667 flameld.tex
-3 0 3 -6 0.0667 flamelb5.tex

The first line in the file indicates the number of frames, shown as 16 in the above example.
The remaining lines describe each frame of the animation. For each frame, there are typically
6 parameters, with an optional 7th parameter. These parameters are:

e 1LY is the lower-left Y coordinate of the frame, in meters.

e 1LZ is the lower-left Z coordinate of the frame, in meters.

Chapter 5 Configuring Models and Events 5-31

e RY is the upper-right Y coordinate of the frame, in meters.
e URZ is the upper-right Z coordinate of the frame, in meters.
e Time is the display duration for the frame, in seconds.

e Texture is the texture map to display for the frame.

e Alpha is the translucency of the frame. (This parameter is optional.) The value of 0 is
transparent, and 255 (the default) is fully opaque. This parameter is useful for fading out
an effect as it completes by using a transparency gradient, by assigning successively
decreasing alpha to the final few frames.

Coordinates are given in the DIS and CIGI convention of X forward, Y right, and Z down.
Because the billboard is rotated to appear normal to the viewer's direction of gaze and placed
at the effect location, the X is implicitly zero and is therefore not needed.

Included with VRSG is a built-in flame effect called flames.flm, shown in the screen capture
above. This .flm effect can be used the same way that other billboard (.eff) and particle (.par)
effects are used.

Adding particle-based effects

You can use VRSG’s particle-based effects (.par) for smoke plumes, contrails, blowing sand,
blowing dust, dust trails, rotor wash, exhaust emissions, tactical smoke, and other special
effects. Some particle effect files mimic exhaust emissions for specific vehicles.

5-32

MVRsimulation VRSG User’s Guide

Particle effects provide a greater degree of realism, as they are volumetric and interact with
wind. VRSG includes many solid particle effects, which are described later in this section.

You can also use particle-based effects for one-time animations such as explosions, muzzle
flash, or tactical smoke. To do so, you would map the intended particle effect(s) into the file
FireMap.ini, DetMap.ini, or ClientMap.ini the same way you would with a billboard-based
(.eff) effect file. You can specify several effects for one entry as shown in this example:

2 9 225 2 73 5 * * explosion large.eff dustPuff.par dustBillow.par

Tactical smoke is generally evoked via a DetonationPDU. You map the enumeration of the
burst descriptor into Effects\DetMap.ini, associating the enumeration with a particular smoke
model. Tactical smoke models have a finite system lifetime parameter, as they eventually stop
smoking. VRSG automatically removes them when they are done smoking.

Chapter 5 Configuring Models and Events 5-33

The following parameters are in the smoke.par file:

max_verts — controls the maximum number of active particles in a given system. This
parameter provides an upper bound on computational load of the system, as well as the
perceived density of the system.

new _verts per_ second — controls the rate at which new particles are generated; thus
a particle system is fully populated after (max_verts / new_verts_per second) seconds.

new verts per meter — ties the rate at which new particles are generated to the
velocity of a moving entity, ensuring that particles are emitted more often as the entity’s
speed increases. This is useful for particle effects attached to fast moving objects such as
missiles or aircraft, to emit enough particles such that the contrail or smoke trail appears
visually connected.

particle lifetime — specifies the lifetime, given in seconds, of a single particle.

particle lifetime ir — specifies the lifetime, given in seconds, of a single particle,
when viewed in the IR spectrum.

particle lifetime nvg — specifies the lifetime, given in seconds, of a single
particle, when viewed in the NVG spectrum.

system lifetime —amount of time the system will continue to generate particles.
After system_lifetime is exceeded, the system will cease generating new particles.
Existing particles will continue to propagate until they expire (controlled by
particle_lifetime). When all particles have expired and there are no more active particles,
the entire particle system is removed.

particle lifetime variance —adds a degree of randomness to the lifetime of a
particle. The lifetime of a particle will vary randomly between particle lifetime — 0.5 *
particle lifetime variance and particle_lifetime + 0.5 * particle lifetime variance.

start colorand end color specify the initial and final color of each smoke particle,
as four component values (red, green, blue, alpha), with each value between 0 and 1.

start color variance and end color variance add a degree of randomness to
the color of each particle.

start size — specifies the starting size of a particle, given in meters.
end_size — specifies the terminal size of a particle, given in meters.

size variance — introduces variability in the start size and end size of particles. The
value given is a percentage of the given start and end sizes. The default size variance is
zero percent.

ir scale —scales particles by a given value when rendered in the IR spectrum.
nvg_ scale — scales particles by a given value when rendered in the NVG spectrum.

azimuth and elevation parameters control the direction vector in which the particle
will be ejected. The variance of these parameters allows you to have something between
a fine spray to a full omnidirectional eruption.

5-34 MVRsimulation VRSG User’s Guide

e speed — controls the velocity of the particle in meters per second. Combining this speed
with azimuth and elevation angles defines the velocity vector of a particle.

e speed variance — provides variability in the velocity.

® acceleration —adds an optional acceleration vector to the particle. You can use an
external force vector, wind, which applies to each particle as well.

e delay — specifies a delay, in seconds, before the first particle is emitted.

e lod range — specifies the maximum range the particle system should be displayed. You
can use this parameter to limit how far away particle systems can be rendered, which can
improve performance.

e radius —normally particles are emitted from a single point, at the prescribed origin. If
the radius keyword is present, particles are randomly distributed across a circle
surrounding the origin. The radius is specified in meters. This feature is useful for
creating rotor wash effects.

e origin—specifies the X Y Z origin of particle emission. By default, particles are
emitted from the origin (X=Y=7-0).

e emissive — causes the particle system to be self-luminous, emitting the specified
amount of light independent of time of day.

e refractive — causes the effect to refract light. A useful application is a jet engine
exhaust effect.

e sticky — causes the particles to move with the entity they are attached to. Normally
particles are emitted and decay in place at their point of attachment. Their motion comes
from their given velocity, direction, and acceleration properties, but are not affected by
the movement of the entity that emitted the particle. The sticky keyword causes the
particles to move with the entity. An example application is a tracer effect, being
attached to a munition round.

e nmin pixel size —specifies the minimum size a particle will display as, given in
screen pixels. If the effect of perspective projection on the size of the particle caused it to
be smaller than this size, the displayed size would be held at this value.

e wind scale —modulates the degree to which the wind vector influences particle
motion. To make particles less influenced by wind, use a value less than 1.0.

Use the particlePixelScalePercent DWORD registry variable to scale the minimum pixel size
of particles that have a min_pixel_size defined for them. For example, a value of 150 would
increase the min_pixel size by 50 percent. This registry variable is useful for distributing one
set of effects files, and then easily tweak them to improve their visibility on a specific display.

Particle systems support separate color parameters for IR and OTW modes. Because IR is
monochrome, these parameters are scalar values in the range 0..1. The alpha channel is taken
from the OTW colors. For example:

start color ir 0.6 ; initial IR intensity of particle

end color ir 0.4 ; terminal IR intensity of particle

By creating copies of and editing the particle description files in the \Effects directory (such
as smoke.par, flames-1m.par, dustBillow-small.par, and helo_rotor.par, and so on) you can

Chapter 5 Configuring Models and Events 5-35

create or customize new particle-based effects. Examine the commented syntax in these .par
files for more information. When creating particle systems for tactical smoke, you can use
\Effects\smoke.par as a starting point. Modify the system_lifetime parameter to control how
long you want the system to emit smoke. Edit the start color and end_color fields to achieve
the desired color for the smoke. Give your new smoke effect a different filename. Finally, add
an entry in DetMap.ini to associate your new effect with a DIS enumeration for a munition. In
this way, you can customize per-model effects.

The following examples show a scene that initially (on the left) uses smoke.par, thus they all
have the same start time and expansion duration.

A scene using smoke.par. All the instances have the same start Using smoke.par variants with different start times and
time and duration. duration (and a few smokeBlack.par instances).

You can vary the size of a particle effect with the size variance <percent> parameter.
The variability affects the starting size and the ending size of the particles created.

Use the boxDims parameter for a box-shaped particle emitter for particle system. With this
parameter you use dimensions in place of a point source or radial-source emitter, in the
following format:

box dims <width> <height>

The following four parameters control the corkscrewing shape of contrails:
e corkscrew angle <degrees> Angle which the particles are emitted off-axis.

e corkscrew angle rate <degrees per second> Rate to diminish the effect of the
corkscrew_angle. This parameter simulates the effect of the missile refining its track as
its flight progresses.

e corkscrew spin <degrees per_second> Rate of rotation of the corkscrew pattern.

e corkscrew delay <seconds> Time into the flight at which the corkscrew pattern
begins.

Among the particle effects (.par) that are delivered with VRSG are several contrail effect
files. You can examine these files, and edit a copy of them in a text editor to create your own
contrail effects.

You can preview .par effects in the Model Viewer to see how the effect appears and
dissipates, but the Model Viewer does not give any performance related information.

5-36

MVRsimulation VRSG User’s Guide

If your site is developing its own custom effects, MVRsimulation strongly recommends you
preview these effects directly in VRSG, by dragging the .par file from Windows File Explorer
and dropping it on the rendered VRSG scene. Doing this kind of inspection will help validate
the effect’s frames-per-second performance, scale, and particle_lifetime (duration).

Adding solid particle-based effects

VRSG’s ballistic solid-particle effects (.spf), located in VRSG’s \Effects directory, model
projectiles with dust trails that are cast from detonation events. Some throw solid particles in
a given direction denoted in the filename (debrisEast.spf, debrisNorth.spf, and so on).

Solid particle effects are “fire-and-forget”; they are not addressable in flight, which means
you cannot change their behavior dynamically. They expire and remove themselves
automatically when they are complete. The solid particles are not terrain-collision aware;
after the 3D debris models are hurled, they end up below the terrain and are no longer visible.
You can optionally attach a particle-based contrail effect to each 3D debris object.

Like other effects, they can be listed in the \Effects\DetMap.ini file and can be detonated from
a Detonation PDU and layered with other effects. They are listed in the \Effects\ClientMap.ini
file that is delivered with VRSG, so you can trigger them from an event in a scenario created
in Scenario Editor, or drag-drop the effects file directly onto the terrain in the VRSG
visualization window.

Also like the other effects, an .spf file can be copied and edited in text editor, which means
you can customize the parameter values or create your own solid particle effect. By copying
and/or editing the solid particle description files in the \Effects directory (debrisLarge.spf,
debrisCrater.spf, and so on) you can create or customize new particle-based effects. The
commented syntax in these .spf files provide more information. Dragging and dropping the
effects in the VRSG visualization is useful for previewing your results.

The following parameters are in the debrisCrater.spf file:

Chapter 5 Configuring Models and Events 5-37

filename = debris-small.hpy — model name of the “solid particle” object that will be
cast by this particle effect.

maxParticles = 150 —the maximum number of solid particle objects emitted by an
instance of this effect during its lifetime.

particlesPerSecond = 100 — the maximum number of objects emitted per second.

emitterLifetime = 0.4 —the duration, in seconds, that an instance of this effect will
emit new solid particle objects (instances of the model from above).

lodrRange = 2000 — the distance from the eyepoint the particle system will be
visible/rendered.

particlelifetime = 4 —the duration, in seconds, each individual solid particle
object will be updated before it is removed from the queue of active particles.

particlelLifetimeVariance = 1 —adds a degree of randomness to the lifetime of
each solid particle object (value in seconds).

velocityDir = 0.0, 0.0, 1.0 — the direction in which particles will be emitted, in
North-East-Up (NEU) coordinates, with +Z being upward. In this example, the particle
system is shooting particles straight upward.

velocityVariance = 50.0, 50.0, 50.0 — adds random variation to the direction in
which particles will be emitted. The values specify an allowable deviation (in degrees) in
heading, pitch, and roll of each individual particle’s initial velocity vector.

velocityMag = 20.0 — defines the velocity of each emitted particle, in meters-per-
second.

velocityMagVariance = 10— applies a degree of randomness to the velocity of each
particle.

rotationRate = 360.0 — controls the speed at which each particle rotates about its
axis (in degrees-per-second).

rotationRateVariance = 60.0 — applies randomness to the rotation rate (in degrees-
per-second).

rotationaAxis = 1.0, 0.0, 0.0 - defines the axis of rotation around which each particle
will rotate (in NED coordinates).

rotationAxisVariance =20.0,20.0,20.0 — defines random rotation (heading, pitch,
roll) to offset the above axis of rotation to add a degree of randomness to individual
particle rotations.

scale = 0.8 —applies scale to the model representing each particle.
scalevariance =0.5— applies randomness to the above scale value.

position =0.0, 0.0, -1.0 — the initial starting position of each particle, in NEU
coordinates. This system is starting the particles 1 meter down.

positionvVariance = 1.0, 1.0, 0.0 — applies randomness to the particle starting
position.

5-38 MVRsimulation VRSG User’s Guide

e orientation = 0.0, 0.0, 0.0 — the initial starting orientation of particles (heading,
pitch, roll) in degrees.

e orientationvariance = 130.0,130.0, 130.0 — applies randomness to each particles’
starting orientation, in degrees.

e particleEffect = debrisTrail.par — the particle effect that will trail each solid particle
as its being simulated.

Performance considerations

MVRsimulation’s particle effects system has multi-dimensional performance implications.
Particles are powerful with an open architecture; they can easily be configured such that
unknowingly you could create effects that adversely affect performance within a VRSG
scene. Your site could create an effect with millions of particles which runs fine in VRSG, as
long as the footprint on the screen is small, that is, far from the eyepoint. (The more pixels
covered by the effect in the scene, the more time it takes to render the scene.) Conversely, you
could create an effect that has a modest number of particles but adversely impacts the frame
rate when it is rendered very close to the eyepoint, especially in a scene using other
rendering-intensive features such as 3D oceans and shadows.

MVRsimulation strongly recommends you preview your effects directly in VRSG prior to
fielding them. To preview an effect, drag the effect (.par, .eff, or .spf file) from the Windows
File Explorer and drop it onto the rendered scene in the VRSG visualization window. Inspect
the effect up close and far away in Desktop Cover mode and press the H key to see the frame
rate. This way, you can see the frames-per-second performance of the effect, the particle
generation rate, and the particle_lifetime duration of the effect. (For example,
MVRsimulation’s support team has seen problematic customer effects that were 8km wide
and 16km high, accidentally configured for a 17-year window with a particle generation rate
of 500 particles per second.)

You can also preview effects in the Model Viewer, but doing so will help only with visual
verification, not with performance-related characteristics.

Adding dynamic craters

VRSG can dynamically deform terrain surfaces to represent craters resulting from munitions
impact. You can associate crater radius and depths with differing munition types. Upon
receipt of a detonation event, VRSG dynamically hyper-tessellates the terrain surface to the
degree needed to capture the crater's shape. The newly formed crater supports mission
functions such as elevation lookups and intervisibility queries. In physics-based IR rendering,
the crater appears hot, with incremental cooling over time, from the outer radius inward.

In the \Effects\DetMap.ini or \Effects\ClientMap.ini file, at the end of the entry for the effect
file, add:

-craterRadius=N
-craterDepth=M

Where the radius and depth are in meters. CraterDepth is optional. If a depth value is not
provided, VRSG will use the radius for the crater depth.

For example:
explosion large.eff -craterRadius=10 -craterDepth=4

Chapter 5 Configuring Models and Events 5-39

The following example shows textured and wireframe views of a set of craters. The
geospecific round-earth terrain of the Prospect Square area at the U.S. Army Yuma Proving
Ground was built with 2 cm imagery collected by MVRsimulation’s small data collection
UAV.

Real-time VRSG screen capture of textured and wireframe viewsf craters renered on 2 em pr—pixe resolution irtl
terrain of the Prospect Square area at the U.S. Army Yuma Proving Ground, AZ. The terrain was built with 2 cm
imagery collected by MVRsimulation’s data collection small UAV.

Real-time VRSG screen capture of textured and wireframe views of craters and a crater particle effect triggered by a
detonation event rendered on 2 cm per-pixel resolution virtual terrain of the Prospect Square area at the U.S. Army
Yuma Proving Ground, AZ. The terrain was built with 2 cm imagery collected by MVRsimulation’s data collection
small UAV.

5-40

MVRsimulation VRSG User’s Guide

Adding signal grenade smoke

VRSG contains a set of colored smoke effects for use as a signal grenade.

These smoke flares are located in the \VRSG\Effects directory:

smokeGreen.par smokeWhitePhosphorus.par

smokeRed.par smokeWhitePhosphorus-mushroom.par
smokeViolet.par smokeWhitePhosphorus-mushroom-small.par
smokeWhite-Om.par smokeWhitePhosphorus-small.par
smokeWhite-OmTall.par smokeYellow.par

The following examples show the white and white-phosphorus effects:

UL

These effects can be used with smoke grenade models in the MVRsimulation military model
library: M18.US.green.hpy, M18.US.red.hpy, M18.US.violet.hpy, M18.US.yellow.hpy,
M67.US.green.hpy, and M83.US.white.hpy mapped to detonations in DetMap.ini. As well,
each smoke grenade model has an analogous “weapon-"" model, which can be used with the
throwing grenade animation for human character models. (See the chapter “Using 3D
Characters in VRSG” for information about character entities and animations.)

The following image shows a character model (human-us-soldier-sof-030.hpy) throwing a
green smoke grenade with the throwing-grenade.bvh animation.

Chapter 5 Configuring Models and Events 5-41

Physics-based destruction of buildings

VRSG supports Applied Research Associates’ (ARA's) damage server, which computes
physics-based destruction of buildings in near real-time. The damage server can replace a
building in VRSG by sending a damaged version that takes into account weapon type, point
of impact, incidence of impact, and building physical properties. The new damaged version of
the building is transmitted to VRSG using a secure HTTPS connection. Building models used
with ARA's damage server must be pre-constructed in some conformal way to be used by
their server.

This damage server is a component of Integrated Weapons of Mass Destruction Toolset
(IWMDT) Simulation, and property of the US government. Distribution is authorized to US
government agencies and their contractors only; critical technology and administrative or
operational use. Contact David Pyle at ARA at dpyle@ara.com for more information.

Adding and editing model metadata

VRSG offers the ability to add attributes, or metadata, to 3D models. Model metadata is
stored in the popular human-readable/editable JSON file format. You can edit JSON files
directly with an ASCII text editor such as Notepad.

Overview

For any given model in MVRsimulation’s model format (HPY or HPX), VRSG checks for
the existence of a file of the same model name, in the same directory, with the “.json”
extension. If such a file exists, VRSG will load and parse the JSON file to extract the
metadata for that model. For example, to modify the metadata for the model AC-
130H.US.grey.hpy, you would create and edit a file named AC-130H.US.grey.json, located in
the same directory as the model itself. Many of MVRsimulation’s newer military models
already have a JSON metadata file embedded within the HPY model format, which you can
extract and edit. You can check for the presence of an embedded JSON file and extract it by
loading the model of interest in Model Viewer and choosing File > Export Model Metadata.
This action exports the JSON metadata file in the same directory as the model. If that menu

5-42 MVRsimulation VRSG User’s Guide

item is unavailable, no metadata file exists within the model, and you will need to create one
from scratch.

You can modify the following attributes of a model in the model metadata JSON file:

e How the model is ground-clamped: to include a model’s origin above-ground altitude,
and resting pitch angle.

e How animated movements of multiple articulated parts of a model are coordinated.
e How DIS burst descriptors in FirePDUs select which muzzle flash animations to play.

e How muzzle blast particle effects are attached to a model and associated with DIS burst
descriptors in FirePDUs.

e How a light point is attached to a model and its color, intensity, and angle attributes.

e How a static, persistent light lobe is attached to a model and its color, intensity, and angle
attributes.

e For models that need to be cut into the terrain (e.g. fighting positions), specify the width
and height of the rectangle the model requires.

e Assign a weapon type to a weapon model.

e Control how a model is scaled as a function of range, overriding the default behavior of
perspective projection.

e Remap a model’s articulated part codes.

o The expected value is an array of integers, consisting of the current part ID
followed by the new part ID.

o Example JSON file entry would look like this:
“artPartRemaps": [
7715, 37,
7716, 38
] 4

MVRsimulation will create more attributes for model metadata JSON files in future VRSG
releases.

For a given model displayed in the Model Viewer, the display shows (on the lower left part of
the display) the x, y, z values of the cursor’s position on the model; these values are needed
for model attributes that require attachment points. The X, y, z values identify a position in
model-space in meters, using the DIS and CIGI convention of x= forward, y= right, z= down.

To copy the x, y, z offset position of a given model in the Model Viewer, place the cursor
over the location of interest on the model and press the letter “P”” key on the keyboard. This
action copies the x, y, z coordinates of the cursor position to the Clipboard.

Model Viewer X

» Copied cursor position:
c !‘ 4.69,-0.00.0.62

Chapter 5 Configuring Models and Events 5-43

Paste the x, y, and z values into the syntax in use in the JSON file.

For a model’s selected articulated part, the part’s relative position under the cursor is also
displayed in the lower left corner of the Model Viewer. This can provide the number needed
for specifying where particle effects are attached to the given model.

For more information about the Model Viewer, see the chapter “Previewing Models, Effects
and Terrain.”

Syntax example

A JSON file is a collection of key/value pairs. A key defines the attribute by name and is
always in double-quotation marks. Following the key is its corresponding value. The value
can be a number, a quoted string, an array of discrete values, or an array of compound
objects. You can find full descriptions of the JSON syntax on many websites. For the purpose
of understanding what model metadata you can control, consider the set of possible key/value
items in the following example JSON file:

{
"version": 1,
"groundPlanezZ": 2.4,
"muzzleTip": [
{
"enum": "2:1:225:1:1:0:0",

"muzzleFlashIndex": 0O
"partId": 6048,
"offsetX": 0.0,
"offsetY": -1.0,
"offsetz": 0.0,
"azimuth": -90.0,
"elevation": -10.0,

"enum": "2:1:225:1:2:0:0",

"muzzleFlashIndex": 1
"partId": 6080,
"offsetX": -0.2,
"offsetY": -1.5,
"offsetz": 0.0,
"azimuth": -90.0,
"elevation": -10.0,

}

Ground clamping

The groundPlane?z key/value pair specifies the Z (vertical) position in the model’s
coordinate system that should rest at ground level when the model is being ground clamped.
By default, a model is ground-clamped at its Z coordinate value of zero. For some models,
such as aircraft, this default is not desirable. Aircraft models typically have their Z origin at
the center of mass, but you would want the model to ground clamp to the bottom of the
landing gear.

5-44 MVRsimulation VRSG User’s Guide

Resting pitch

The restingPitch key/value pair specifies a pitch angle to apply to a model when in a
ground clamped state. This is useful for models that do not sit flat when resting on the
ground, such as many helicopters.

Terrain cutouts

Models that have the terrainCutout attribute will cause VRSG to cut a rectangular-shaped
hole into the terrain to accommodate the model. This is useful for models such as fighting
positions and tank defilades. The value is a compound structure consisting of width and
height attributes, as illustrated by the following example:

"terrainCutout":

{
"width": 7.0,
"height": 19.6
}
The VRSG model library contains several pre-built fighting position models which are stored
under Models\Other\fighting-position-*.hpy.

Weapon type

The weaponType field indicates to the animation system how the weapon model is placed
into the hands of a human character. When a human holds a weapon model, the weapon type
is used to select the appropriate animation given the human’s posture and weapon state
attributes. Possible values for weapon type include “rifle”, “rpg”, “pistol”, etc. To support a
new weapon type, BVH animation files for the new weapon type must be created and added

to the Animations folder.

Scale function

The scaleFunction field is a compound structure that controls how a model is scaled as a
function of range from the viewer. Without this entry, a model is scaled consistent with the
perspective fore-shortening of camera projection. Models can be made to be scaled artificially
larger as a function of range to enhance identification/classification and account for the
reduced visual acuity associated with computer-generated graphics. This feature is best
illustrated by an example:

"scaleFunction":
{
"startScale":1.0,
"endScale": 2.0,
“startRange”: 1000.0,
“endRange”: 10000.0
}

In the above example, the model’s scale will increase between 1X and 2X as the distance to
the model increases between 1 kilometer and 10 kilometers. For distances beyond 10
kilometers, the scale will remain at 2X, and for distances below 1 kilometer, the distance will
be 1X.

Chapter 5 Configuring Models and Events 5-45

Articulated parts animation

In a JSON file you can modify or define the articulated part animation data. In this way you
can control the start time, position, and duration of multiple articulated parts in a coordinated
manner.

The articulated part animation data provides two purposes:

e [t simplifies part movement for a controlling simulation. A simple simulation can just
toggle a switch state to move a part from position A to position B, or from position B to
position A. This relieves the simulation of having to provide explicit part position data
over time.

e [t enables the coordinated movement of multiple articulated parts. For example, an
aircraft model may have a complex object to move, such as the landing gear, which
requires the coordinated movement of multiple parts. The gear may be modeled with
multiple parts, such as the door, wheel brace angle, hydraulic arms, and so on. The
simulation could simply control the door angle, and the position of everything else would
derive from the door angle. Simple simulations can just toggle the switch state, but more
advanced simulations might need to take explicit control over, to represent a condition
such as the gear getting stuck half-way down.

A simulation could use the simple switch state interface to animate this coordinated group of
multiple parts. The simulation can also take explicit control of a single part by sending
articulated part positions; in this case the positions of the other parts in the group are implied
by the position of the single part that the simulation is controlling.

An articulated part animation is identified by the partAnimations variable name. The value
section is an array of structured elements. Each of these elements contains the following
members:

e appearance - this optional field provides the switch state bit used to play the animation.
The value is expected in hexadecimal, with the "0x" prefix expected. If this field is not
present, the simulation must provide articulated part data for one of the parts in the group,
the other part positions will be implied by the provided part positions for the other part.

e duration - the length in seconds of the animation.

e name - provides a label which is used in the Model Viewer’s Switches menu and serves
as an identifier for the part being controlled.

e table - this is an array of arrays. One array is provided for each part in the animation
group. At minimum one array must be provided for one part. If additional parts are
included in the group, they will be additional elements of the array. The elements of the
array are as follows:

[partId, timeO, positionO, ... timeN, positionN]

Where:

partid is the DIS articulated part code plus the degree of freedom identifier. This is the
same value that would be used in a DIS Entity State PDU articulated part record.

5-46 MVRsimulation VRSG User’s Guide

Following the part1d, is a set of time/position pairs, indicating the position of the part at the
given time into the animation sequence. For part translations, these would be values given in
meters. For angular movements, these would be given in radians.

In the following example, all the models of this Sky Dragon DK-10 air defense system have
one or more animated articulated parts and an embedded JSON metadata file.

Loading the leftmost model, DK-10.MA.camo, the scene in the Model Viewer, you can see
that it has two animations, one for the launcher and another for the articulating ground
support pods.

Switches Articulated Parts About...
| ~ 0x18 damage (3 << 3)
0x2 mobility (1 << 1)
0x1000 head/landing lights (1 << 12)
0x4000 brake/anti-collision lights (1 << 14)

(0x100000000000000 PodAnim (1 << 56) \ The two animations Of
0x400000000 driver door/bomb door (1 << 34)

0x800000000 passenger door/bomb daor (1 << 35) > articulated parts within the
0x10000 LaunchAnim (1 << 16) DK-10.MA.camo model.
(0x1000000000000 suppress cockpit (1 << 48)
(0x200000000000000 weapon station 1 (1 << 57)
(0x2000000000000 (1 << 49)
(0x400000000000000 weapon station 2 (1 << 58)
(0x4000000000000 (1 << 50)
(0x800000000000000 weapon station 3 (1 << 59)
(0x8000000000000 (1 << 51)
(0x1000000000000000 weapon station 4 (1 << 60)

To edit these animations, first extract the model metadata from the HPY model file by
choosing File > Export Model Metadata. This action extracts a JSON metadata file located
outside the model and in the same director which the model is located. The JSON metadata
file has the same name as the model and a .json extension.

Chapter 5 Configuring Models and Events 5-47

& MVRsimulation Model Viewer

File View Setup Switches Asficulated Parts About.

Open.
Save Model State

Load Model State

Copy Model..

Export Model Metadata

Show Tile Coverage on Earth

Copy CLT Commands To Clipboard

Exit

Model Viewer x
Exported model metadata fo
Bl EVRSGIFUIResModels\Mitary\DK-10MA camo son
/ M Psimudation
9.61 5.49 /«’

The following is an excerpt from the JSON file for the DK-10.MA model, which describes
the two animations that are delivered with this model. (You could add more animations to the
model by editing this file.)

"partAnimations": [
{
"appearance": "0x100000000000000",
"duration": 2.5,
"name": "PodAnim",
"table": [

[
5705,
0.0,
-0.0,
2.5,
0.5966072082519531
]l
[
5741,
0.0,
0.0,
1.6666666269302368,
2.96705961227417
]I
[
5775,
0.0,
0.0,
1.25,
2.96705961227417
]I
[

5807,

5-48 MVRsimulation VRSG User’s Guide

= o o
N O O
g~ o~

14

-2.96705961227417

"appearance": "0x10000",
"duration": 5.0,

"name": "LaunchAnim",
"table": [
[

8

5837,

0.0,

0.0,

5.0,
0.7853981852531433

5869,

2.5,

0.0,

5.0,
0.7853981852531433

5895,

2.5,

0.0,

5.0,
-0.3000000119209289%6

1,
"version": 1

}

Muzzle flash animations

Many models have muzzle flash animations that are played in response to an entity issuing a
DIS FirePDU. If a model has a single muzzle flash animation, and there is no JSON metadata
file provided for the model, any FirePDU issued by the entity will trigger the playback of the
muzzle flash animation. If a model has multiple muzzle flash animations, they will each be
assigned an index, starting at zero and ending at the number of animations minus 1. If there is
no JSON metadata file provided for the model, then a FirePDU will play the first muzzle
flash animation in the model (index 0).

By adding JSON metadata for the model, you can control how FirePDUs select which muzzle
flash animation to play. A JSON file can contain a muzz1eTip object, which is defined by an
array of compound objects in the JSON syntax. Each array object has two members,
associating the DIS enumeration from the FirePDU’s burst descriptor with the index of a
muzzle flash animation. The enum member contains the DIS enumeration, and the

Chapter 5 Configuring Models and Events 5-49

muzzleFlashIndex field contains the index of the muzzle flash animation to play for that
enumeration.

For models with built-in flip-book animations for muzzle flash effects, only the enum and
muzzleFlashIndex members are needed. These two members are sufficient to allow VRSG
to choose the proper built-in muzzle flash animation from the FirePDU burst descriptor.

A muzzle flash animation can also elicit the creation of particle-based effects. By adding
additional fields to the muzz1eTip object, you can control how particle effects are attached
to guns or other articulated parts in response to FirePDUs. When you add a particle effect to
FireMap.ini and use the -muzzleTip option, VRSG will attach the effect to the main gun,
given by DIS articulated part code 4416. VRSG also estimates the end of the gun barrel by
analyzing the model’s geometry. With additional metadata, you can control which FirePDUs
are associated with which articulated parts (such as secondary guns or grenade launchers),
and control how and where the effects are attached. The following fields allow you to
customize this behavior:

"partId": 6080,

The part1d field indicates which articulated part to attach to. The default is 4416, for the
primary gun.

"offsetX": -0.2,

"offsetY": -1.5,

"offsetz": 0.0,
The of fset triplet specifies the origin of the effect relative to the part’s coordinate system.
By default, VRSG will place the effect at the X extent of the part, which typically
corresponds to the end of the gun barrel. Note these values are in meters and follow the DIS
local coordinate system conventions of X forward, Y right, Z down.

"azimuth": -90.0,

"elevation": -10.0,
The azimuth and elevation fields specify the direction of the particle emission. By
default, the particles will emit along the X (forward) axis of the part. In some cases you might
need to override this default direction, such as a rear-facing gun in the bed of a technical
pickup truck, or a side-facing gun in an AC-130 gunship.

The following complete example is taken from the M777 artillery model.

"muzzleTip": [
{

"label" : "cannon",
"partId": 4032,
"offsetX": 4.9,
"offsetY": 0.0,
"offsetzZ": 0.0,
"azimuth": 0.0,
"elevation": 0.0,
"recoilDistance" : 0.5,
"effectCommand": "muzzleBlast.par muzzleBlast right.par

muzzleBlast left.par",
"muzzleFlashIndex": 0

}

5-50 MVRsimulation VRSG User’s Guide

Light points

In a JSON file you can define light points for a model, such as an aircraft taillight. A light
point is a light source that emits rays of light in all directions from a specific location, but
does not cast illumination onto other surfaces. In the model’s JSON file you define the light
point’s location, size, and color and intensity of the light.

The following JSON file is an example of the syntax for defining a light point taillight for
MVRsimulation’s aircraft model f-16c.us.grey.457fs-85-1457.hpy:

{

"version": 1,
"groundPlaneZzZ": 1.82,

"lightPoint": [
{

"X": -5.6,
"y": 0.0,
"z": -3.4,
"size": 0.1,
"minPixelSize": 6.0,
"maxRange": 5000.0,
"red": O,
"green": 255,
"blue": 0O,
"intensity": 255,
"mask": O,
"period": 1.0,
"dutyCycle": 1.0,
"azimuth": 0.0,
"elevation": 0.0,
"horzLobeAngle": 180.0,
"vertLobeAngle": 180.0

The attributes for a light point are:

e X, Y, 7identify the light’s position in model-space in meters, using the DIS and CIGI
convention of X forward, Y right, z down.

Chapter 5 Configuring Models and Events 5-51

size — The radius of the light in meters.
minPixelSize — The smallest size the light will display as, given in pixels.
red, green, blue — The color values of the light.

intensity — The intensity, or alpha value, of the color. A value of 00 would be a very
dim light, and a value of 255 would be the color at full intensity.

Mask — Which bit of the EntityStatePDU appearance field is used to turn on the light. If
zero, the light is always on.

period and dutyCycle — Frequency and duty cycle of flashing lights. For example, for
a light to flash at 2 Hz, use a period of 0.5. A dutyCycle of 0.25 would have that light
be on for half of its flash cycle. For non-flashing lights, use equal values for period and
dutyCycle.

azimuth and elevation — Direction of directional lights, given in degrees relative to
the entity they are attached to.

horzLobeAngle and vertLobeAngle — Lobe size of a directional light.

Non-flashing omnidirectional lights only require the attributes for position, sizes, and color.

Light lobes

In a JSON file you can define static, persistent light lobe attributes for static models, such as
streetlights or for entities. A light lobe illuminates any 3D surface that is inside its cone of
influence. The model’s JSON file is where you define the location, orientation, and color of
the light lobe.

The following example shows the JSON syntax for adding a light lobe to the metadata file of
a streetlight model, in this case MVRsimulation’s model streetlight-003.hpy:

{

}

"version": 1,
"lightLobe": [

{

"offsetX": 2.25,
"offsetY": 0.0,
"offsetZ": -9.42,
"azimuth": 10.0,
"elevation": -90.0,

"halfAngle": 60,
"fadeRange": 150,

"red": 255,
"green": 255,
"blue": 255

}
1,

The attributes for a light lobe are:

offsetX, offsetY, offset identify the light’s position in model-space in meters,
using the DIS and CIGI convention of x forward, Y right, Z down.

5-52 MVRsimulation VRSG User’s Guide

The location for
attaching a light
lobe to this
streetlight model.

The x,y,z offset
position over
which the cursor
is resting. Use
these values to
specify the
attachment point
in the JSON file.

e azimuth — Rotate right/left from the XYZ origin. (Use 0 for straight down)
e elevation — Pitch up/down from the XYZ origin. (Straight down is -90.)

e halfAngle — Size of light pool cast on the ground. A good sized light pool is 100; a
value of 10 yields a smaller light pool.

e fadeRange — Brightness of the light cast on the ground. (100+ is a bright light; a value
of 10 is a soft light.)

e red, green, blue — The color values of the light each in the range 0-255.

To increase the brightness of the light lobe, for example for stadium lighting, increase the
values of the halfAngle and fadeRange attributes.

To easily obtain the X, y, and z offset position and other attributes needed for adding a light
lobe to a model:

1. In Model Viewer, place the cursor over the exact location on the model you want the
light lobe to be.

2. Press Shift-P on the keyboard.

This action copies to the Windows Clipboard not only the X, y, z offset values of the
cursor position, but also the orientation and lobe color attributes.

@ MVRsimulation Model Yiewer - u] x
FileView Switches _Articulated Parts _ ABOUL..

Chapter 5 Configuring Models and Events 5-53

3. Paste the captured attributes from the Clipboard into the model’s JSON file.

Model Viewer X

Copied cursor position:

"offsetX”; 0.97,

wn

4. 1Inthe JSON file, be sure to append the heading information “"version": 1 and
“"ightLobe":” to the beginning of the light lobe syntax as shown in the example above.

To enable the light lobes to illuminate in VRSG, set the Environment tab settings on the
Dashboard to a dark sky or night time.

Note: All streetlight and stadium light models in MVRsimulation’s culture model library have
built-in light lobe attributes compiled into the HPY model.

Adding cultural features to the terrain

Cultural features include any static model such as a tree, a building, a street sign, or a non-
moving character or vehicle. Cultural features for a given terrain are described in a cultural
feature file (vrsg.clt), an ASCII text file that specifies models and their locations on the
database. VRSG reads the vrsg.clt at runtime and loads the models described in the file.

To add culture to a given 3D terrain, use one or more of the following methods:

e Build up substantial content on the terrain with the VRSG Scenario Editor application,
which is installed with VRSG. This application provides a graphical interface with tools
you can use to build dense 3D scenes on your 3D terrain with models from
MVRsimulation’s content libraries. In addition to adding realistic visual content you can
create pattern-of-life scenarios with Scenario Editor. For more information, see the
MVRsimulation Scenario Editor User’s Guide.

e Place one or two cultural features directly on the terrain by dragging a given 3D model
file (in MVRsimulation’s HPY or HPX model format) from Windows Explorer and
dropping it in the VRSG visualization window at a specific location on the terrain. To
refine the placement of the model, attach to the model and then move it or reorient it.
Save the edit to a cultural feature file by pressing the J key on the keyboard. This process
is described further in this chapter.

e Place one or more models on the terrain by editing a cultural feature file in an ASCII text
editor to add an entry for the model with its coordinates, orientation, and directory path,
as described in this chapter. Models that can be placed this way include large inset
models of multiple buildings generated by CityEngine and converted to
MVRsimulation’s model format (HPX).

The best way to build up a lot of culture on 3D terrain is with VRSG Scenario Editor. While
this application’s main purpose is to provide a means for creating scenarios to run in VRSG,

5-54 MVRsimulation VRSG User’s Guide

it provides an easy way to place and manipulate culture quickly on terrain tiles, and to
produce a cultural feature file. For more information about VRSG Scenario Editor, see the
MVRsimulation Scenario Editor User Guide.

Although you can add a culture model to the terrain while it is rendered in VRSG, if you need
to add a substantial number of static models, it is more efficient and substantially less time-
consuming to do so in VRSG Scenario Editor. Moreover, MVRsimulation strongly advises
against using these steps to make edits to culture on a terrain that you have already edited in
Scenario Editor and exported a scenario to run in VRSG. It is best to use the method below to
modify a few culture models that are not associated with scenarios created in Scenario Editor.

A cultural feature file is always named “vrsg.clt” as in
\MVRsimulation\VRSG\Models\vrsg.clt. Although VRSG always writes updates to the file
\MVRsimulation\VRSG\Models\vrsg.clt, you can have multiple vrsg.clt files located in
different subdirectories, for example stored with terrain tiles organized by geographic area.

During visualization, VRSG loads all vrsg.clt files it finds in its search path (that is, in the
directories listed in the Alternate Folders for Terrain, Models, and Textures section of the
Advanced Parameters dialog box) as well as the one in the \MVRsimulation\VRSG\Models
directory. In effect, the content is appended as if it were all in a single vrsg.clt file. If
necessary, you can examine the Vrsglnfo.txt to see which vrsg.clt files were loaded for the
VRSG session.

Using cultural feature files can increase the flexibility of your 3D terrain. For example, if
your terrain is used by one set of users that require a forest in a specific area while another set
of users wants the area populated with some buildings for a different scenario, instead of
compiling the trees or the buildings into the terrain, you could reference them in separate
cultural feature files and provide each set of users different cultural feature files. An example
of having different types of culture in separate cultural feature files can be found in the
Kismayo, Somalia, 3D terrain delivered with VRSG. The cultural feature files are located in
\MVRsimulation\VRSG\Terrain\Somalia\Kismayo\CLT.

Parts of a cultural feature file

The cultural feature file (vrsg.clt) directs VRSG where to place static models on the 3D
terrain.

The file begins with a coordinate system header at the top of the file, such as:
! LL Coordinates

or

! UTM Meters in zone <zone>

Each model is specified by a one-line entry in the file listing its position, angle, and filename,
followed by optional commands (described in the table “Summary of available CLT
commands” later in this section). A model entry has the following syntax:

XY Z Yaw Pitch Roll Model-Filename
where X Y Z specifies the location of the model in geodetic or UTM coordinates in meters.
The elevation may be specified in meters above sea level (MSL), or above ground level

(AGL). Use the control comment ! agl=on to instruct VRSG to interpret elevations as AGL,
or ! agl=off to interpret elevations as absolute values relative to sea level. For example, the

Chapter 5 Configuring Models and Events 5-55

following control comment will cause VRSG to interpret the elevation of all subsequent
models as AGL:

! agl=on

If you are working with models that are not situated on hilly terrain properly, you can
explicitly clamp them to the terrain as shown in this vrsg.clt entry:

! LL Coordinates

! agl=on
N32 08 29.5596 W1lll 10 30.6152 0.0 45.00 1.00 2.00
afghan-building-140.hpy

! agl=off

Notice ! agl=on and the elevation value of "0.0".

"Yaw Pitch Roll" specifies the orientation of the model. These values are given in degrees
(degrees, minutes, and seconds). The degrees portion can be of arbitrary precision; it is
scanned as a double and you can leave minutes and seconds zero.

"Model-Filename" is the name of the HPY or HPX model file to use for the static entity.
Exclamation marks (!) placed at the beginning of a line begin a commented line.

Consider the following vrsg.clt example:
!

! LL coordinates

! clamp_ lp=on

N35 16 25.59 wllée 37 21.09 -1.0 320.5 0.0 0.0 1t ap bikelake.hpy 0 1
!

N35 16 25.59 wWlle 37 21.09 -1.0 320.5 0.0 0.0 1t rw bikelake.hpy 0 1
I

N35 16 34.28 Wlle 37 24.96 -1.0 320.5 0.0 0.0 1t right vasibar.hpy 0
1

!

! clamp lp=off

The drawing order for models listed in a vrsg.clt file is the order in which they are listed.
Assigning model IDs

By default, VRSG does not assign IDs to individual static models listed in a cultural feature
file (either static cultural features or static vehicles and characters). However, they can
optionally be assigned unique IDs much like DIS entities are given IDs. You can explicitly set
the ID of a particular model in the vrsg.clt file to make that model addressable.

Some reasons you might need a static model to be addressable are:

e You want to know the ID of a particular model so that you can attach to it (by using the
Attach tab in the VRSG Dashboard).

e The model is a light point model and your simulation needs to send a message to VRSG
to control the model’s displayed intensity.

e Youneed a model to be addressable by your CIGI host, or by DIS, or some external
system.

e You want to send a SetDataPDU message to VRSG to change a model’s appearance
mask (for example, switch a model from an undamaged state to a damaged state).

5-56 MVRsimulation VRSG User’s Guide

To assign an ID to a static model, insert the control comment ! id=N into the vrsg.clt file.
For example, the following control comment assigns the ID of 127 to the model that follows
it:

' id=127
A static model that has been assigned an ID in the vrsg.clt file is stored in VRSG’s internal

database using the DIS convention of a site of zero, host of zero, and the assigned unique
entity ID number.

The only case in which VRSG assigns IDs to static models automatically is for a cluster of
models that VRSG has aggregated for efficiency/performance purposes. In those cases, the
assigned IDs of such clusters start at ID number 65536.

Coordinate systems for model placement

VRSG supports a variety of coordinate systems for specifying model locations in the vrsg.clt
file. Simple XY coordinates can specify the location of the model if prefixed by:

! UTM Meters in zone NN

For example:

! UTM Meters in zone 38M

! agl=off

227488.439 9959488.751 3.178 0.00 0.00 0.00 kismayo-fence-0004.hpy
227440.775 9959506.484 2.425 0.00 0.00 0.00 kismayo-fence-0001.hpy
227370.607 9959559.630 1.404 0.00 0.00 0.00 kismayo-fence-0003.hpy
When VRSG encounters the UTM zone directive while parsing the vrsg.clt file, further XY
locations will be interpreted as being relative to the given UTM zone (such as 38M in this
example).

Geodetic coordinates can be used in the vrsg.clt file using the following example syntax:

! LL Coordinates
N35 13 0 wll7 32 12 720 168 0 0 FV103.GB.desert.hpy

The above example would place the model at 35 degrees, 13 minutes, and 0 seconds north,
and 117 degrees, 32 minutes, and 12 seconds west, at an altitude of 720 meters MSL. You can
enter decimal degrees instead of deg/min/sec using the same syntax. Simply include the
fractional part of the degrees, and leave minutes and seconds zero, as shown in this example:

N35.2166 0 0 W117.5366 0 0 168 0 0 FV103.GB.desert.hpy

Military Grid Reference System (MGRS) coordinates can be used in the vrsg.clt file using the
following example syntax:

16S FQ 4521 6603 720 168 0 0 FV103.GB.desert.hpy
MGRS eastings and northings can be entered with 1, 2, 3, 4, or 5 digits of accuracy.

Ground clamping

By default, elevations are interpreted as being above mean-sea-level (or height above
ellipsoid). You can instruct VRSG to interpret elevations as above-ground-level (AGL) by
adding the ! agl=on command to the vrsg.clt file as described earlier in this section.

Clustering model instances

By default, VRSG clusters culture model instances and neighboring models at runtime as a
means of optimizing performance. To turn off clustering, use the ! cluster=off command,
and ! cluster=on to resume clustering.

Chapter 5 Configuring Models and Events 5-57

Orientation

By default, a model is given the orientation specified by the yaw, pitch, and roll parameters in
the vrsg.clt file. Orientation clamping orients a model such that it sits naturally on the terrain
surface, conforming to the roll and pitch of the local terrain surface. This means you can force
VRSG to orient the model such that it observes the intended heading (yaw), but ignores the
pitch and roll values in the vrsg.clt file, using instead values that are consistent with the local
terrain surface. To enable orientation clamping, add the following command:

! orient=on

Orientation clamping remains enabled for all subsequent models in the vrsg.clt file until it is
explicitly turned off. To instruct VRSG to return to using the given roll and pitch parameters
directly, add this command:

! orient=off
Damage state and other appearance modifiers

To add dynamic appearance attributes such as a damage state or fire or smoke effects to a
model, add the -appearance=x command to the line following the model. The appearance
value is the DIS appearance mask given in hexadecimal without the “0x” prefix.

The following are settings for common appearance changes:
e Destroyed is 0018.

e Burning is 0020.

e Flaming is 8000.

The appearance is a bitwise OR of all the specified settings; for example to specify a
destroyed, smoking, and flaming T-72 model:
12051 45722 -1 0 0 0 T-72-M4.CZ.camo.hpy —-appearance=8038

The complete set of DIS appearance masks is documented at: www.sisostds.org.

All of MVRsimulation’s entity models have damage states. MVRsimulation is now
standardizing on building damage states into its culture models. Thus far, VRSG is delivered
with over 300 culture models that contain three damage states. Most of the models are
buildings, a few are tree models. The following example shows one building (with the orange
awning) in various damage states.

No damage. Minimal damage (doorway and roof behind the building).

5-58 MVRsimulation VRSG User’s Guide

Partial damage.

Full Damage. .

By lightly rolling the middle mouse button (wheel) over a building with damage states in the
VRSG scene, you can preview the three damage states. If you roll the middle mouse wheel
over several buildings and trees, you can see them all in damages states, as shown next:

Damaged area.

In Scenario Editor, which is delivered with VRSG, you can set these building to change to
damage states within a scenario, as described in the Scenario Editor User’s Guide.

The culture models that currently contain damage appearance states are:

Afghan-building-3B-001 to Afghan-building-3B-154.

Kismayo-building-0008, Kismayo-building-0088, Kismayo-building-0107, Kismayo-
building-0115, Kismayo-building-0130, Kismayo-building-0445, Kismayo-building-
0466, Kismayo-building-0505, and Kismayo-building-0506.

All building models prefixed “Hajin-Building-*

Defoliated Tree-cassia-001, Tree-cassia-005, Tree-elm-002, Tree-elm-006, Tree-poplar-
004; these tree models also have a different appearance for each of the 4 seasons.

You can preview all MVRsimulation’s culture models that have damage states at:
https://www.mvrsimulation.com/3DContent/Damage State Culture.shtml.

Chapter 5 Configuring Models and Events 5-59

Specifying a model state

You can view a model in the Model Viewer and manipulate its articulated parts, switch states,
light maps, appearance, and thermal hotspots for IR mode. From the Model Viewer’s File
menu, choose the Save Model State command to save the current state of the model. This
action produces a file with the saved state, using the name of the model, but with a “.prt”
extension. When VRSG sees a PRT file associated with a given model, it will automatically
initialize the model state with the values saved in the PRT file.

VRsimulation Model Viewer - nox
@ MvRsimulation Model Vi

File View Setup Switches Amficulated Patts Abaut.

M dimidation

2.0 0.8

You can rename the saved PRT file to a unique name, and assign it to a specific instance of a
model in the vrsg.clt file. In this way, you can save multiple states of a model. For example:

12051 45722 -1 0 0 0 T-72-M4.CZ.camo.hpy -prt=destroyedT72.prt
For more information about the Model Viewer see the chapter “Previewing Models, Effects,
and Terrain.”

You can specify the state of a model’s articulated part in the terrain’s vrsg.clt file with the
-setPartValue command instead of specifying the external PRT file. This command
enables you to save the degree-of-freedom (DOF) for an articulated part.

The syntax of the command is:

-setPartValue (partId, value)

See the “Specifying the initial state of an articulated part” section earlier in this chapter for an
example of the syntax.

You can use multiple -setPartValue commands in one entry in the vrsg.clt to set the
values for multiple parts of a given model.

Attaching a model to another model

In VRSG you can attach a static or entity model to another entity, by using the either the
-attachModel command in a ModelMap.ini entry (as described earlier in this chapter) or by
using an -attachEntity command in an entry in the cultural feature file. This command is
useful for cases such as attaching radars or vehicles to ships, or drivers or pilots to vehicle

5-60 MVRsimulation VRSG User’s Guide

entities. In one case you use -attachEntity with assigned x,y,z coordinates for the
attachment point; in the other case you assign a .bvh animation.

Adding static characters to vehicle entities

The \MVRsimulation\VRSG\Animations directory contains a set of driver, passenger, and
weapon-holding animations for adding static characters to most military ground vehicles as
well as many aircraft in the military model library. To add a static character to a ground
vehicle or aircraft, add the ~attachEntity command to the model’s entry in the terrain’s
vrsg.clt file.

The syntax of the command is:

—attachEntity=site:host:entity -bvh=<.bvh>

You specify in the —attachEntity command the entity ID (site:host:entity) of the vehicle to
which you intend to attach a character.

This example also shows use of the -bvh command to assign a BVH animation to a static
model. For more information about how to add static models directly to the terrain, see the
section “Adding static features directly to the rendered scene.” For information about working
with 3D characters, see the chapter “Using 3D Characters in VRSG.”

This next example shows a character holding a Vector 21 binocular/rangefinder:

The entry for the vrsg.clt cultural feature file for this character is:

! 1d=3998

N36 33.6 0 EO056 24 0 1.0 -90.00 0 O human-us-soldier-039.hpy -
human -weapon=weapon-Vector2lB.hpy -bvh=JTAC-standby-Vector2l-
firing.bvh -attachEntity=WPB-87329 -attachOffset=7.4,-2.1,-2.24

Note in this example the ~-weapon= command, which assigns a weapon to a character also
assigns an accessory model like the Vector-21. If the ID of the entity to which you want to

attach a character is not known in advance, use the marking of the entity, if that is known.
Instead of using the syntax: —attachEntity=site:host:entity use the syntax:

Chapter 5 Configuring Models and Events 5-61

-attachEntity=<marking>
where <marking> is the DIS marking text of the entity.

The attachment point is specified with —attachOffset=. The attachment offset is expressed as:
-attachOffset= x,y,z

where x, y, z are the intended coordinates of the attachment point on the attached/parent
model. To obtain the coordinates of the attachment point, open the model in the Model
Viewer and place the cursor at the intended attachment point. Doing so displays the cursor’s
location coordinates. (See the chapter “Previewing Models, Effects, and Terrain” for
information about the Model Viewer.)

Note: You can also use VRSG Scenario Editor, which is delivered with VRSG, to attach
characters to vehicle entities as drivers, passengers, and gunners. For more information about
Scenario Editor, see the MVRsimulation Scenario Editor User’s Guide.

Attaching munitions, radars, or other entities to vehicle entities

VRSG’s library of military models contains a set of munitions you can add to vehicles. To
attach a munition model to an entity listed in the Modelmap.ini, add the -attachEntity
command to the model’s entry in the terrain’s cultural feature (vrsg.clt) file. (Note that the
command is not to be added to the ModelMap.ini file.)

The syntax of the command is:
-attachEntity=site:host:entity -attachOffset= X,Y,Z
The following example vrsg.clt entry attaches the AGM-88 model to the F-16 entity:

! id=1044
NO O O WO OO0 0O 0 0O 0 AGM-88.US.grey.hpy —-attachEntity=ID -
attachOffset=X,Y,Z

In the above entry, the position is irrelevant because the AGM-88 model will be attached to
the F-16 entity. The ID should be the marking or the entity ID in site:host:entity syntax.

For the offset, replace X, ¥, Z with the intended attachment coordinates for the munition

model. To determine the attachment point, open the entity in the Model Viewer and place the
cursor at the attachment point to display the cursor’s location coordinates, press the letter “P”
key on the keyboard. This action copies the x, y, z coordinates of the cursor position. (See the
chapter “Previewing Models, Effects, and Terrain” for information about the Model Viewer.)

5-62 MVRsimulation VRSG User’s Guide

This next example shows several types of aircraft and ground vehicles on the flight deck of
the CVN-77.US aircraft carrier model:

-~ - -

Entries for the vrsg.clt cultural feature file for this scene include the following:

! id=10100

S00 22 43.644 E042 32 27.102 -0.00 90.00 -0.00 0.00
MH-60R.US.grey.hpy -attachEntity=CVN-77.1 -attachOffset=-59.1,21.0,
-19.91 -appearance=80102000000

! 1d=10203

S00 22 43.644 E042 32 27.102 -0.00 0.00 -1.90 0.00
E-2C.US.grey.hpy -attachEntity=CVN-77.1 -attachOffset=61.0,-6.9,
-20.45 -appearance=12400000

! 1d=10206

S00 22 43.644 E042 32 27.102 -0.00 90.50 -0.00 0.00 A-S-32A-
36.US.white.hpy -attachEntity=CVN-77.1 -attachOffset=-74.8,24.8,
-17.45

! 1d=10210

S00 22 43.644 E042 32 27.102 -0.00 -90.00 -0.00 0.00
F-35C.US.grey.hpy -attachEntity=CVN-77.1 -attachOffset=-88.0,32,
-19.51 -appearance=80102000000

Note the entries for the stationary aircraft in this scene also use the models’ wheels-down
appearance bit with the ~appearance command.

Adding threat domes as culture

In addition to creating threat domes in a ModelMap.ini file as described earlier, you can also
create them as static models in a cultural feature (vrsg.clt) file. Instead of using a model name
in an entry in the CLT file, use one of the following syntaxes to display a semi-ellipsoid or
cylindrical threat dome:

Chapter 5 Configuring Models and Events 5-63

bubble (horzRadius, vertRadius, R, G, B)

cylinder (radius, height, red, green, blue)

The following example describes a yellow threat dome with a horizontal radius of 4000
meters and a vertical radius of 1000 meters:

N35 0 0 wll7 0 0 1234 0 0 O bubble (4000, 1000, 255,255,0)

The next example was used to create the dome in the scene below on the left:

! id=1004
513042.65 3804766.49 1845.46 0.00 -0.00 0.00

bubble (1000,255,255,0)

! id=1005

513042.65 3804766.49 1845.46 0.00 -0.00 0.00 Dbubble (500, 1000,
255,0,0)
5 7

Placing light points on the terrain

A light point is a light source that emits rays of light in all directions from a specific location,
but does not cast illumination onto other surfaces. Runway lights are typically light points.

You can add light points to the terrain in two ways:

e In MVRsimulation’s Terrain Tools you can use the Cultural Lights terrain feature type to
create a shapefile to add a large number of light points to the terrain, like a region’s road
network, with attributes for color, size, and spacing. This shapefile will compile the light
points into the terrain. (See the MVRsimulation Terrain Tools for Esri ArcGIS Pro User’s
Guide for more information.) You can turn off the display of a terrain’s compiled light
points for ground-based simulations in the More Graphics Options dialog box in the
VRSG Dashboard.

o In the terrain’s vrsg.clt cultural feature file, you can add an entry for a light point model,
as described below.

To create the effect of rows of lights such as runway lights, you first create a light point
model in Presagis Creator, or by hand in Notepad as described in the chapter
“MVRsimulation 3D Model Format.” Once you have created the model, you edit the
appropriate vrsg.clt file to specify the location of the light, as shown in the following entries:
! LL coordinates

! clamp_lp=on

! agl=on

5-64 MVRsimulation VRSG User’s Guide

N35 16 25.59 Wlle 37 21.09 0.0 320.5 0.0 0.0 1t ap bikelake.hpx 0 1
N35 16 25.59 Wlle 37 21.09 0.0 320.5 0.0 0.0 1t rw bikelake.hpx 0 1
N35 16 34.28 Wlle 37 24.96 0.0 320.5 0.0 0.0 1t rt vasibar.hpx 0 1

! clamp lp=off

Individual vertices of a light point model can be automatically adjusted by VRSG at runtime
to conform to the terrain profile. To enable this feature, add the following entry to the vrsg.clt
file:

! clamp_lp=on

When VRSG sees this directive, each light point vertex is modified so that the light point
elevation value (Z coordinate) is interpreted as above ground level (AGL). To disable light
point ground clamping, add this entry to the vrsg.clt file:

! clamp_lp=off

Summary of available CLT commands

The following table describes the available commands for entries in a cultural feature
(vrsg.clt) file:

Command Description

-appearance=x Specifies appearance bits to be applied to the model.

-attachEntity=S:H:E or |Specifies the site:host:entity or marking of the entity to which

_attachEntity=marking the model should be attached.

-attachOffset=x,y,z Specifies the coordinates of the attachment point, given in the
coordinate system of the entity being attached to. Values are in
meters, and use the DIS/CIGI axis convention of x= forward, y=
right, z= down.

-bvh=<bvh-file> Assigns a BVH animation to a human character.

clamp_Ip= on/off Toggles whether light point elevation values will be clamped
relative to the terrain surface or interpreted as absolute elevation
values. Use with agl=on and names of light point models.

-human Interprets the model as a human character.

-irtHot=E,T,G Sets the degree to which specific IR hotspots (engine,
tracks/wheels, gun, are displayed for a model. Use 1.0 for full
intensity of hot spots, 0.5 for half intensity, and so on.

-ir_Scale=N Scales a model’s overall IR intensity.

-material=N Provides an explicit material code assignment to all polygons in
a model for physics-based IR simulation.

Chapter 5 Configuring Models and Events 5-65

Command

Description (continued)

-minLODRange=N

Controls the level of detail displayed for a model, by placing a
lower-bound on the model’s computed LOD range.

-normalMap Enables the use of a model’s normal map textures. Because normal
maps use a great deal of video memory, you must explicitly enable
them on a per-model basis.

-noSpecular Disables specular highlights for the model.

-oceanDynamicsScale= Scales the responsiveness of an oceanClamped model’s dynamics.

Values larger than 1.0 will make the model’s dynamics more
responsive; values smaller than 1.0 will dampen the entity's
dynamic response. Small vessels have larger values than large
vessels.

-prt=<prt-file>

Specifies a PRT file saved from the Model Viewer to articulate a
model's parts, sets its switch states and appearance, and initializes
its IR hot spots.

-radarRangeScale=N

Modulates the RADAR return intensity of a model.

-scale=N Scales a model by the factor indicated by N.
-setPartValue(partld, Sets the DOF rate for an articulated part of a model.
value)

-shadowOffset=N

Specifies a vertical offset for planar projected shadows. By default,
planar shadows are projected to the model’s Z=0 plane.

-terrainModel Considers this model when performing elevation lookups.

-utmModel Converts a model, such as a runway model, that is in UTM
projection to UTM WGS1984 projection. (VRSG natively supports
geocentric WGS1984.)

-uvw=UV, W Assigns material properties for thermal IR computation.

-vehicle Denotes a static model as a vehicle for IR material assignment; if a

model is qualified as a vehicle, default material assigned is “100111
- steel 2.5 cm, 30 deg.”

-weapon=<hpy-file>

Assigns a weapon model (and accessories like a cell phone,
Vector21B, or shovel) to a human character.

5-66 MVRsimulation VRSG User’s Guide

The name of a model
in a scene, and the
texture of the face
where you clicked.

These commands must be on the same line as the rest of the model entry, following the model
name. For example:

N35 0 0 wil7 0 0 0 0 0 O truck-030.hpy -lod scale=2

486953.07 4294452.87 0.00 0.00 0.00 0.00 lppt-lisboa-lights.hpx
-utmModel

Examples of using commands for handling static models on VRSG’s 3D oceans can be found
in the Kismayo Amphibious scenario that is installed with VRSG.

Identifying static models on the terrain

From within VRSG, you can identify a static (or entity) model used in a database by attaching
to it. Doing so is useful for determining a model you want to replace, modify, or use again
elsewhere.

To identify a model on a database being rendered in VRSG:
1. Run VRSG in Windowed mode or Desktop Cover mode so that you can use your mouse.

2. Position the cursor over the center of the model of interest. Press the middle mouse
button/scroll wheel.

VRSG displays the name of the model and the texture that is applied to the face you have
clicked, as shown in the following example:

F-l

) “"' \l' T
it A

|

In full-screen mode, you can identify a model by moving the eyepoint to position the model
directly in front of you and then pressing Shift —L. Doing so displays the same information as
shown in the example above. However, you have less control in specifying exactly the model
you want to identify. (Press Ctrl F12 to display the names of the all the models in the scene.)

You can find out which cultural feature files VRSG is using in the last or current visualization
session by inspecting the Vrsginfo_ *.txt file, located in the \MVRsimulation\VRSG directory.
This can be useful to verify whether VRSG is loading a particular cultural feature file.

Chapter 5 Configuring Models and Events 5-67

Adding static features directly to the rendered scene

As mentioned earlier, using the VRSG Scenario Editor application is the best way to build up
culture and refine model placement on terrain tiles, and to produce a cultural feature file as
described in this chapter.

Two other ways of adding static culture to the terrain are:

o [Editing a terrain’s cultural feature file (vrsg.clt) to add or edit an entry for one or more
model files. This includes large models comprised of buildings generated by CityEngine
and converted to MVRsimulation’s model format.

e Dragging a model file from Windows File Explorer directly to the VRSG visualization
window and dropping it on the terrain. Press the J key on the keyboard to save the
addition to the terrain’s cultural feature file.

Although placing culture directly in the rendered scene in VRSG (described in the steps
below) is supported, Scenario Editor offers much more control and more options for placing
and orienting static models precisely on the terrain.

Editing a cultural feature file to add models

You can edit a terrain’s cultural feature file (vrsg.clt) to place, replace or change the location
of static models on the terrain, using the options and examples described in this chapter. If
you make edits to a vrsg.clt file while VRSG is running, there is no need to restart VRSG to
have your changes take effect. Simply save the changes, and then drag the modified CLT file
onto the VRSG scene, where the updated version will replace the old version.

The following simple example illustrates the vrsg.clt file for MVRsimulation’s Seattle, WA,
terrain, which includes nine 20 km x 20 km models comprised of hundreds of buildings
exported from CityEngine and converted to MVRsimulation’s model format.

! UTM Meters in zone 10T

547508.17 5276833.67 71.8 0.00 0.00 0.00 Seattle K6.hpy
550886.64 5276852.53 71.7 0.00 0.00 0.00 Seattle K7.hpy
554072.41 5276872.94 45.8 0.00 0.00 0.00 Seattle K8.hpy
547542 .54 5271825.89 58.6 0.00 0.00 0.00 Seattle L6.hpy
550921.14 5271860.68 65.7 0.00 0.00 0.00 Seattle L7.hpy
553368.77 5271872.87 56.7 0.00 0.00 0.00 Seattle L8.hpy
547588.99 5266815.05 78.3 0.00 0.00 0.00 Seattle M6.hpy
550973.86 5266857.35 54.1 0.00 0.00 0.00 Seattle M7.hpy
554341.26 5266876.58 56.2 0.00 0.00 0.00 Seattle M8.hpy

! clt version=2

! agl=on

548896.049 5274332.557 0 44.0033 -0 0 Space-Needle.hpy

548533.016 5275616.308 0 339.8598 -0 -0 kismayo-radio-tower-002.hpy -
scale=1.8

5-68 MVRsimulation VRSG User’s Guide

MVRsimulation’s virtual Seattle, WA, terrain, with building structures extruded and textured in
CityEngine, exported as nine 5 km x 5 km FBX models, and converted to MVRsimulation’s model
format.

Note: CityEngine is a standalone software product for rapidly creating procedural 3D models
from building footprints and road vectors using OpenStreetMap (OSM) data. The product can
export models in FBX model format or Collada DAE format for outputting as .FLT in
Presagis Creator) which you can then convert to MVRsimulation’s model format with
MVRsimulation’s conversion utilities. See the chapter “Converting FBX and OpenFlight
Formats to MVRsimulation Runtime Formats.”

Dragging a model directly to the VRSG scene

You can add models of cultural features, and static characters or static vehicles directly to the
terrain in a “drag and drop” manner by dragging them from Windows Explorer to the terrain
loaded in the VRSG visualization window, and then saving their position and orientation in
the database’s cultural feature file. This section describes how to add and reposition a model
this way. Models must be in MVRsimulation’s HPY or HPX model format.

Note: MVRsimulation strongly advises against using the steps described below to make edits
to culture on a terrain that you have already edited in Scenario Editor. It is best to use the
method described below to make minor adjustments to one or two culture models on 3D
terrain not associated with scenarios created in Scenario Editor. For more information about
VRSG Scenario Editor, see the MVRsimulation Scenario Editor User’s Guide.

To add a static feature to the terrain directly in VRSG:
1. Start VRSG.

2. Using the 6DOF game controller, navigate to the area on the terrain where you want to
place the model.

3. From the Windows File Explorer, select (with the mouse cursor) the model you want to
place on the terrain, drag the model to the VRSG visualization window, and then place it
(drop it) on the terrain by releasing the mouse button exactly where you want the model
to be located.

Chapter 5 Configuring Models and Events 5-69

If you drag-and-drop a model that has not already been loaded into VRSG, the visualization
window will turn dark for a moment and then refresh, as loading of the new texture requires
video memory resources to be allocated.

P
Haama
]
@
]
@
@
L4
@
4
@
@
@ chs
@ chai
]
@
]
@
!

When you release the mouse button, your model (the blue chair model shown in this example)
will appear in the VRSG visualization window, placed in the scene on the ground under the
cursor, facing north.

Optionally, set a viewpoint at the location of the new model placement so you can easily
return to its location later.

By default, the model you add to the scene is placed on the ground below where you dropped
it on the terrain, (regardless of whether Ground Clamp is selected in the Preferences tab). If
you want to place a model precisely in space, that is, exactly where you drag and not on the
ground, press the Ctrl key when you drag the model from Windows File Explorer to the
visualization window. If you cannot see the model after you have placed it, zoom out from the
scene a little bit—it might be that the eyepoint is located at the center of the model.

Refining model placement and orientation
You can refine a model’s orientation and location by attaching to it, enabling model dragging
mode, and then moving it on the terrain.

To refine a model’s placement and orientation:

1. Use the 6DOF game controller to position the eye point to the intended location relative
to the model.

2. On the Dashboard Preferences tab, select the Ground Clamp Elevation and Ground
Clamp Orientation options so that the model will remain seated on the terrain when you
move it.

3. On the Attach Options tab, optionally set the attachment mode to Tether Free or
Compeass. (You can use other attachment modes, but these two are recommended for
moving a model.)

5-70 MVRsimulation VRSG User’s Guide

4. Zoom in close to the model of interest and attach to the model by positioning the cursor
over the center of the model and clicking the middle mouse button on it:

After attaching to
the model, press
Shift-D to turn on

model dragging
mode.

5. Press Shift-D. This keyboard command puts the model in “model-dragging” mode, that
is, it enables you to move the model to which you are attached.

6. Move the model by moving the 6DOF game controller. Move the 6DOF game controller
forward/backward or left/right to position the model along the terrain surface. Rotate the
6DOF to change the orientation (heading) of the model.

The model not only moves and rotates in response to your game controller inputs; you
can also pitch the model by turning the middle mouse button/wheel, or roll the model by
pressing the Shift key while turning the mouse wheel. To change the pitch and roll of a
model, be sure to unselect the Ground Clamp Orientation option on the Preference tab, as
that option overrides pitch and roll to conform to the terrain. (The sensitivity of these
rotations is controlled by the Rotation Gain setting on the Dashboard’s Preference tab.)

Press Shift D

again to turn off

model dragging

mode. And then

press D to

detach from the
model.

Chapter 5 Configuring Models and Events 5-71

7. Once you have the model positioned as you want it, press the D key on the keyboard (or
the 4 button on the SpaceMouse Pro) to detach from the model, and optionally press
Shift-D on the keyboard to disable the model dragging function.

The model is now positioned in its new location on the terrain. This feature placement is
temporary until you save it in the terrain’s cultural feature file (vrsg.clt).

Save your changes to the terrain’s CLT file by pressing the J key on the keyboard as
described in the next section.

You can place several models on the terrain at once, by using one of these methods:

e Drag a model for each feature to the location you want it on the terrain, and then refine
their positions.

e Lase multiple locations on the database, by left-clicking those locations to save their
coordinates to VRSG’s waypoints.dat file for later use in model placement. Edit the CLT
file to add entries for all the new models, pasting in the coordinate locations for each
entry from the waypoint.dat file and assign them unique IDs. In VRSG, attach to each
model and refine the model placements.

If a model has an ID number, you can attach to a model not visible in the VRSG window
through the Dashboard’s Attach tab, by clicking Select as described in the chapter “Exploring
the VRSG System.” To specify the selection, specify the site and host as 0, and then the
model’s ID number.

Note: With a model’s ID number, you can send a SetDataPDU to change its appearance, such
as to turn buildings or bridges into a destroyed state.

Press Shift-X to delete a static model that you are attached to.

Measuring the distance between two locations

To obtain the distance between two locations (for example, two models) in the VRSG scene,
click each location.

The distance between the two points is displayed two ways:

e The distance is displayed briefly with the current coordinates in the upper-left corner of
the screen as shown in the example below:

64828475 -147.604128 139.07 33.75
NG64 49.708 w147 36.248 456
pistance from last click: 33.75m

-. . q

- -

o The distance is written to the end of the last entry of the waypoints.dat file.

Each time you click in the scene, the location at which you clicked is written as an entry to
the file \MVRsimulation\VRSG\waypoints.dat, in the form of lat/long/alt/distance from the
last click. Most recent entries are appended to the end of the file. The rightmost field of an

entry displays the distance (in meters) between last click and the prior executed click.

5-72 MVRsimulation VRSG User’s Guide

For example:

64.828416 -147.603430 139.26 83.71
64.828475 -147.604128 139.07 33.75

This example shows the distance between the two clicked locations is 33.75 meters.

Saving model placement edits

To save to save model placement edits to a terrain’s vrsg.clt file, press the J key on the
keyboard. This action updates the CLT file with the model’s location and orientation state.

Each time you press the J key to save model placement edits to the vrsg.clt file, a backup of
the previous version of the CLT file is created in the same directory. The CLT backup
filenames are appended with sequential numbers, starting with “ 000 for the first backup.
This means the files would be named vrsg.clt, vrsg_000.clt, vrsg_001.clt, and so on. In the
case where you might be using multiple vrsg.clt cultural feature files, if you modify a given
model and then press the J key, the modified model will be written back to the same CLT file
that originally contained the model. If you add new models directly to the visualization
window and then press the J key, VRSG will add all new models to the default cultural
feature file \WVRSG\Models\vrsg.clt. To avoid potential confusion, consider not loading
multiple CLT files if you plan to edit models directly in the VRSG visualization window.

VRSG preserves existing CLT files unchanged, but it will save new and modified CLT
content in the coordinate system that is set in the Dashboard, with one exception: if you have
the display set to MGRS coordinates, VRSG will write out the cultural feature file in UTM
coordinates (MGRS coordinates are less precise).

As mentioned earlier, if you make edits to a vrsg.clt file while VRSG is running, there is no
need to restart VRSG to have your changes to the edited file take effect. Simply save the
changes, and then drag the modified CLT file onto the VRSG scene, where the updated
version will replace the old version.

Note: If you have User Access Control (UAC) activated on your Windows system, the CLT
file will not be saved or updated in the VRSG installation directory if the
\MVRsimulation\VRSG\Models directory is located in C:\Program Files. Instead the updated
CLT file will be stored in the directory
C:\Users\<username>\AppData\Local\VirtualStore\Program
Files\MVRsimulation\VRSG\Models.

To have the updated vrsg.clt file take effect the next time you start VRSG, copy the CLT file
from the \VirtualStore\Program Files\MVRsimulation\VRSG\Models directory to C:\Program
Files\M VRsimulation\VRSG\Models. To avoid having VRSG files written to the
\VirtualStore directory, you could turn off UAC from the User Accounts control panel, if your
site policy allows it, or install VRSG in a folder other than C:\Program Files.

Organizing models specified in the cultural feature file

The cultural feature file (vrsg.clt) updates of any models you have placed directly in the scene
might contain absolute paths to the models when you are done. This means you can restart
VRSG without having to set up the search paths for these models in the Advanced Parameters
dialog box. However, you might need to organize the models and edit the paths in the CLT
file if you distribute the database and associated CLT file to other users.

Chapter 5 Configuring Models and Events 5-73

Ifa CLT file contains full path names for models, VRSG will prompt you to browse for the
directory before attempting to load the database. You can either cancel and take no action, or
select a directory into which to copy the models.

A way to organize them automatically is to add to the CLT file the following comment:
! copyToDir=<directory>\

This comment instructs VRSG to copy all subsequent models that you drag to the scene (and
their referenced textures) to the specified directory. For example:

! copyToDir=e:\kabul\models

10257 11421 -1 0 0 O carpet-display-001l.hpy

The copyToDir instruction is turned off implicitly at the end of the vrsg.clt file, or can be
turned off with just an empty specification:

! copyToDir=

To specify a path that contains spaces in the vrsg.clt file, enclose the full directory path in
quotation marks as in the following example:

515470.836 3806455.683 0 341.6379 1.4124 1.3274
“h:\extra models\other\WFP-food-bag-stack-005.hpy”

If you edit a path by hand in the vrsg.clt file and need to specify a path that contains spaces,
you must enclose the full directory path in quotation marks as shown in the example. To
remove paths, copy all specified models to a local directory and retain only the model name,
add the following command:

! stripPaths=on

To replace a model with another one, for example to replace one kind of car, building, or tree
with another, you can simply open the vrsg.clt file in a text editor, and replace the name of the
model that appears at the end of a feature entry. Be sure that the directory in which the model
is located is part of the search path specified on the Startup Parameters dialog box.

If you need to verify which cultural feature file(s) VRSG is using in the last or current
visualization session, you can do so by inspecting the Vrsginfo_*.txt file, located in the
\MVRsimulation\VRSG directory.

Organizing culture for use with BSI’s MACE

If you use Battlespace Simulation’s (BSI’s) Modern Air Combat Environment (MACE) with
VRSG, you can also add cultural features directly in MACE, but doing so can become
cumbersome for adding extensive areas of culture. A good rule of thumb is to add in MACE
directly (via a vrsg.clt file) any culture that you will want to be destructible. Import the
vrsg.clt into MACE (choose File > Import CLT). For all other culture, create your culture in
Scenario Editor, export the scenario, and then add the exported vrsg.clt to VRSG’s search
path as you normally would. This culture will automatically load in VRSG for any MACE
mission you load in that area. If you have culture that you want to use only in certain
missions, name the vrsg.clt file something unique, for example, GraylingForest.clt, and add it
to its own uniquely-named folder, and then add the folder to VRSG’s search path. In this
case, VRSG will not automatically load the specially named CLT file. For a given mission in
MACE, choose Mission Settings > Database, and select GraylingForest.clt to load the culture
for that specific mission. Bear in mind this action causes VRSG to remove any other CLT
files it has loaded when you load that specific mission. For more information about using

5-74 MVRsimulation VRSG User’s Guide

VRSG with MACE, see the BSI MACE and MVRsimulation VRSG Integration Guide
installed with your MACE license.

Resizing cultural feature models

You can obtain the height, length, and width dimensions for each model from the Model
Viewer as described in the chapter “Previewing Models, Effects, and Terrain.” (Also
mentioned in that chapter is a way to measure the distance between two points on a model
displayed in the Model Viewer.)

To increase or decrease the scale of a static model while visualizing it in VRSG, attach to the
model, and then press Ctrl up-arrow to increase the size of the model, or Ctrl down-arrow to
decrease its size. The model expands or shrinks by 1% each time you press the key
combination.

When you press the J key on the keyboard to save an updated version of a vrsg.clt file, VRSG
appends the modifier -scale to the entry in the CLT file of the scaled model.

For example:

227424.663 9959532.97 1.507 45 0 0 kismayo-tree-acacia-001.hpy
-scale=1.2
227420.444 9959533.271 1.483 25 0 0 kismayo-tree-acacia-001.hpy
-scale=0.90

You can also specify a scale value directly in the CLT file; following the model name, you
add the modifier —~scale=n as shown in the example above.

To examine the scale of a model or distance between models in the context of a VRSG scene,
you can use one of MVRsimulation’s 3D ruler models, located in
\MVRsimulation\VRSG\Models\Other. Use ruler-001.hpy, ruler-002.hpy, or and ruler-
003.hpy to measure the length of a model or the distance between models. (See the section
“Measuring the distance between two locations” for an alternate way of measuring distances
between two points.)

Models ruler-001, ruler-002, and ruler-003 respectively, shown in the Model Viewer.

As with adding any other static model to the VRSG scene, in Windows Explorer select the
file of the ruler model you want to place on the database and drag it to the location of interest
in the VRSG visualization window. Attach to the model, enable model-dragging mode, and
drag it to refine its location. Attach to it and press the X key to delete the model.

Chapter 5 Configuring Models and Events 5-75

Press the T key
to display
system and
texture memory
statistics.

Models ruler-001, ruler-002, and ruler-003 respectively, shown in VRSG rendered scenes.

Accommodating use of large textures

If you add a large set of models to a large database at runtime via the vrsg.clt file, at some
point you might exhaust the video memory and might need to allocate more video memory to
VRSG. A message about a “thrashing texture” indicates that more textures are being
requested from the scene than can fit into video memory.

You can reduce the far clip plane as a quick fix to try and reduce video memory demand. But
if that is not appropriate or effective, check the number of video memory textures being
allocated by pressing the T key, to display the system and texture memory statistics, as
shown:

36846M8 Fr y - =

2048 swapp: 5L free, B180 SRAM, 2048 VRAN = L

2349 systel aps-

2520_video memory swaps

2349 Textures paged, 0 pending, 2014 touched -

12 Tiles paged, 0 freed, 0 in poal

30012 nodes visited, 5859 nodes rendere 367 draw calls, 56348980 triangles

MVRsimulation generally recommends you use a video card with at least 8 GB for
visualizing high-resolution models. If you encounter problems visualizing large number of
models with high resolution textures and you already have a video card of 8 GB or more, you
can force VRSG to truncate texture sizes.

Select a value in the Max Texture Size field of the More Graphics Options dialog box on the
Dashboard’s Graphics tab to force VRSG to downsize all loaded textures to 2048 x 2048,
1024 x 1024, or 512 x 512 pixels:

5-76

MVRsimulation VRSG User’s Guide

Rendering Options

[+ Sort Geometry
[Synchronous Texture Paging
[»" Enable Cuttural Lights

Max Texture Size [None -

Anti-Aliasing 512

Vertical Retrace Sync |2048

RVR Multiplier 7% 2.00
QK Cancel

The None option (the default) means that VRSG will not downsize any textures.

You can override the selected Max Texture Size option on a per-model basis by creating a file
\Models\max_texture sizes.txt, in which you list one model per line, followed by the
maximum texture size for that model, as follows:

CVN-77.US.grey.hpy 4096

You do not need to know the maximum texture size for a given model; the 4096 entry shown
in the example above would load the full-resolution model, even if its largest texture was only
2048 x 2048.

The Max Texture Size option, used with a max_texture sizes.txt are useful tools when VRSG
is running on an older machine with an older video card with limited VRAM and you want to
limit the resolution of models that are less important in your simulation session.

Troubleshooting z-fighting

When two co-planar surfaces are rendered, sometimes flickering or flashing results are visible
in the VRSG rendered scene. This z-fighting, which is an error in depth resolution (z-buffer),
occurs when the graphics card tries to decide which item is on top. As this decision happens
for every frame, flickering or flashing occurs when one item is rendered on top of the other,
followed by rendering them in the reverse order in the next frame. Typical culprits are decals,
windows, and runways.

To remedy z-fighting in VRSG, try adjusting the field-of-view (FOV), increasing the Near
Clip, or decreasing the Far Clip settings on the Dashboard's Graphics tab to enlarge the depth
bias. In 3D ocean simulation, turn off the Advanced Depth Bias setting to enlarge the depth
bias.

If the z-fighting occurs in culture placed on the terrain in Scenario Editor, adjust the model(s)
slightly in Scenario Editor to put a small bit of distance between the two affected planes.

If the z-fighting occurs on a converted runway model (which is not uncommon due to its
multiple layers) or a City Engine urban model, see the remedies described in the chapter
“Converting FBX and OpenFlight Formats to MVRsimulation Runtime Formats.”

CHAPTER 6

Developing VRSG Plugins

VRSG provides a plugin interface, which enables a developer-user to develop software that
VRSG executes at runtime. This plugin is a dynamically loaded library (DLL), which VRSG
loads when it is initialized, and can potentially control VRSG’s behavior.

VRSG supports a set of functions, which you implement inside the DLL. During runtime,
VRSG calls these functions, passing the thread of execution to the developer-user’s code.
From within the DLL function, VRSG state data can be modified.

You use can use any development environment or compiler to create a plugin. This chapter
assumes you are familiar with the C++ programming language, and software development in
the Windows 64-bit environment.

An F-18 2D overlay on the VRSG scene rendered from the Battlespace Simulations’ Modern Air
Combat Environment (MACE) plugin.

Note: VRSG is a native 64-bit binary and is compiled with Microsoft Visual Studio 2019
(VS2019). If you are upgrading from VRSG 6.x, any user developed plugin at your site that
extends VRSG’s Dashboard interface with a property sheet (that is, a tab on the VRSG
Dashboard), must be built, or rebuilt, with Visual Studio 2019. If your plugin does not extend
VRSG’s Dashboard, there is no restriction on the development environment you can use to
build your plugin.

6-2 MVRsimulation VRSG User’s Guide

Because VRSG supports DirectX 11, any user-developed custom plugin which previously
used DirectX 9 in VRSG version 5.x for drawing graphics or any action with the graphics
API will need to be modified to use DirectX 11 with VRSG 7.

Plugin signatures and data structure definitions used as arguments are declared in
MVRsimulation’s Plugins.h header file. You can download the plugin.h header file from the
MVRsimulation Download Server, in the /Software/Interfaces directory.

Customers on active maintenance who need an account on MVRsimulation's Download
Server can request an account by sending a request to downloads@mvrsimulation.com.

Types of applications for VRSG plugins

VRSG exports network-based interfaces with CIGI and through the Distributed Interactive
Simulation (DIS) protocol. Sometimes, however, it is more convenient or efficient to combine
all the functionality of the collective system into the VRSG runtime. The plugin interface is
designed to meet the needs of these types of applications. You can use plugins to:

e Control dynamics — your plugin could set the position and orientation of the eyepoint
frame-by-frame, allowing you to integrate your own custom dynamics code. Within your
plugin you could read joystick inputs, propagate the dynamics state, and have this
reflected in the imagery generated by VRSG.

o Synthesize PDUs — your plugin could generate DIS messages and send them to VRSG for
the purpose of creating and updating dynamic models or special effects.

e Add content to the VRSG scene — your plugin could render 3D and 2D primitives using
DirectX 11 calls, supplementing the imagery generated by VRSG. This type of
application is especially useful for creating custom 2D overlay displays, or augmenting
the 2D HUD overlays that are built into VRSG with additional text or graphics.

e Access VRSG’s frame buffer — your plugin can grab VRSG’s frame buffer contents
frame-by-frame. Potential applications include a digital contrast tracker or an MPEG
codec.

e Capture mouse or keyboard events — your plugin can receive notification of mouse clicks
on the 3D scene, and even identify which entity the cursor was over when the mouse
button was clicked.

e (Collect information about entities — VRSG can pass your plugin information about the
entities it is managing in the scene.

e Query VRSG — your plugin can query certain VRSG properties, and/or request
intervisibility or elevation lookups.

Chapter 6 Developing VRSG Plugins 6-3

Overview of functions for VRSG plugins

VRSG supports a set of functions that it looks for in the set of DLLs that it loads. If these
functions are present in the DLLs, VRSG will invoke them at the appropriate times during
runtime. VRSG can support multiple plugins that implement the same entry point. VRSG will
call each plugin’s implementation in turn. If multiple plugins implement the same function,
VRSG will call these functions in the alphabetical order of the plugin filenames. For example,
if a plugin named HUD.dll was used to draw 2D overlays, and the H264.d1l was used to
encode video, H264.d1l would be called after HUD.dIl. Because of the calling order, the
encoded MPEG output would include the graphics rendered by HUD.dII. If you want the
encoded H.264 output to not include the graphics rendered by HUD.dIl, you could simply
rename HUD.dIl to ZHUD.dIL

When VRSG looks for these entry points in your DLL, it first tries the symbol name
generated by Microsoft Visual C++. If that symbol is not found in the DLL, VRSG will next
try the ANSI-C version of the function name. If you are using a compiler other than Microsoft
Visual C++, you will need to declare your functions as extern “C” in order for VRSG to load
the symbols from the DLL.

Your plugin only needs to implement the functions you need for your application. VRSG will
not attempt to invoke functions that are not present in the DLL.

The functions in Plugins.h are supported by VRSG at the time of this writing, and represent
the level of control that VRSG customers have required to date. If you need additional control
beyond these functions, contact support@mvrsimulation.com.

An OpenGL interoperability plugin is available which enables you to code 2D overlay
graphics such as HUDs, in machine-native OpenGL for rendering in VRSG. (This plugin
supersedes VRSG having to emulate it with a Direct3D layer.) Contact
support@mvrsimulation.com for a sample Visual Studio 2019 project that illustrates how you
can draw graphics using OpenGL and have them display over a VRSG scene.

Creating a plugin
This section describes how to set up a plugin project for Microsoft Visual Studio 2019. If you

use a different development environment, see the documentation for that product for creating
a dynamically-loadable DLL. The following steps illustrate how to create a plugin for VRSG.

To create a plugin:

6-4 MVRsimulation VRSG User’s Guide

1. From the File menu in Visual Studio 2019, choose Create a New Project.

Visual Studio 2019

Open recent Get started
Search recent (Al<S) P é Clone a repository
Azure DevOps
> Today

Open a project or solution
Open a local Visual Studio project or .sin file

Navigate and edit code within any folder

D
Eﬁ Open a local folder
i

Create a new project
Choose 2 project template with code scaffolding

to get started
Continue without code -3
2. Select MFC DLL from the project templates list.
o o X
Create a new project P—— - e
Recent project templates Crr * Windows * by -

e i e ST Gt

2% MFC Dynamic-Link Library Cos €4+ Windows Library
Shared items Project
A Shared ltems project is used for sharing files between multiple projects.

Ce+ Windows Android {05 Linux Desktop Console
Libay UWP Games Mobile

ﬁ" CLR Class Library (.NET Framework)
G fibrary targeting the NET framework. Provides interoperability between .NET and
s code.

Ce+ Windows Library

% Makefile Project
(3 Bring your own build system to compile C+-+.

C++ Windows Desktop Console Library

WE* MFC ActiveX control

Chapter 6 Developing VRSG Plugins 6-5

3. Enter a name and a folder for your project.

Configure your new project

MFC Dynamic-Link Library =~ €++ Windows Librayy
Project name

VisgPluginDLL ‘

Location

- 18

Solution name @

VsgPluginDLL ‘

[Place solution and project in the same directory

4. Click Create.

Configure your new project

MFC Dynamic-Link Library ¢+ windows Library
Project name

1 Vrsg-PluginDLL

Location MFC DLL

| DAPlugins

DLL type

Solution name @ ECHN gL,

| Visg-PlugindLL Additional features:

] Automation

[C] place solution and project in the same.] Windaws sockets

Back Create

5. Select the MFC Extension DLL option as shown above, then click OK.

6. Visual Studio will create initial source files named dllmain.cpp and MyVrsgPlugin.cpp.
You can begin implementing your plugin entry points into these files, or add other source
files to the project.

VRSG is a 64-bit application. Therefore, for a VRSG plugin you should always build the
64-bit configuration of your DLL.

6-6 MVRsimulation VRSG User’s Guide

Now you are ready to build your project for VRSG. The result of a successful build will be a
DLL in the directory \MyVrsgPlugin\x64\Release\MyVrsgPlugin.dll. You can manually copy
this file to the VRSG\Plugins folder, or add a post-build event to your project to automatically
copy the file after each build.

Adding a property page to VRSG’s Dashboard
To add an Property Page to VRSG’s Property Sheet, use the following form of extinitialize():

__declspec(dllexport) BOOL _ cdecl extInitialize(CWinApp *theApp,
CPropertySheet *pPropSheet)

Change the character set to “Multi-Byte Character Set” using the projections settings as
follows:

VrsgPluginDLL Property Pages T X
Confi i All Configurati wv| Platform: |xbd v ‘ | Configuration Manager...
4 Configuration Properties Target File Extension il fal
ngeral Extensions to Delete on Clean *odf;*.cache*.obj;*.obj.enc*.ill*.ipdb;*.iob};* .resources;* 1
Advanced. Build Log File $(IntDir)$(MSBuildProjecthame). log
Debesying Preferred Build Tool Architecture Default
Ve Diectones Use Debug Libraries <different options>
b Enable Unity JUMBO) Build No
i Lmke.ar Copy Content te OutDir No
ol Wanie i Toul Copy Project References to OutDir Mo
> Resources :
b XML Document Generator Copy Project References' Symbols to O No
b | Hrowselnbormation Copy C++ Runtime to CutDir No
b Build Events Use of MFC Use MFCin a Shared DLL
b Custom Build Step Uisr e pteskhararter et 5
I Code Analysis Whole Program Optimization <different options>
MSVC Toolset Version Default
v C++/CLI Properties
Common Language Runtime Support Mo Commaon Language Runtime Support
.NET Target Framework Version
Enable Managed Incremental Build No
v
Character Set
Tells the compiler to use the specified character set; aids in localization issues.
< >
[ok][canced || apoty |

Note: If your plugin extends VRSG’s Dashboard, you can only use a Release version of your
plugin with VRSG. You will not be able to run your plugin inside the debugger. To run your
plugin in the debugger, the Debug build of your plugin must use this version of extinitialize():

__declspec(dllexport) BOOL cdecl extInitialize(CWinApp *theApp)

Your debug version of the plugin will not have access to the Dashboard, so inputs must be
obtained from other means (such as, registry defaults, read from a file, and so on).

Verifying your DLL is loaded by VRSG

To verify that VRSG loads your DLL properly, start VRSG with your DLL in the
\MVRsimulation\VRSG\Plugins directory. If any dependencies are not satisfied, VRSG will
issue a warning and will not load the DLL. VRSG outputs to its information log all functions
it finds in a plugin. This information log is stored in
\MVRsimulation\VRSG\VrsgInfo_<hostname>.txt. Examine this log to confirm that all of
your entry points are recognized by VRSG. For every plugin loaded, VRSG outputs all found
entry points; for example:

Chapter 6 Developing VRSG Plugins 6-=7

Loading plugin c:\MVRsimulation\vrsg\plugins\myvrsgplugin.dll
found extInitialize()
found extTick()

Distributing plugins in a shared environment

If your site has a VRSG directory structure shared across multiple computers, but not all
computers need a particular plugin (plugins distributed with VRSG like the ones described in
this chapter or plugins your site-specific plugins), you can make unique \Plugins directories
by renaming the \MVRsimulation\VRSG\Plugins\ directory, to \Plugins_hostname where
_hostname is the target computer for the plugin. VRSG will check for any \Plugins_hostname
directories before it checks the \Plugins directory. This way, in the shared directory
environment, different VRSG channels can load different plugins, or no plugins at all.

6-8 MVRsimulation VRSG User’s Guide

CHAPTER 7

Working With Sensor-View Modes and
Physics-Based IR

A sensor view is an electronically enhanced out-the-window view that enables a user to
discern elements of the world that are not readily apparent in the visual spectrum.

VRSG provides thermal sensor imagery that portrays the environment of a simulated device
with true perspective and real-time responses to the movement of a vehicle and its sensor.
Thermal sensors portray relative temperature differences in a given scene and are therefore
able to provide information that is not available in the visible spectrum (that is, not available
in the “out-the-window” view). The contrast in temperatures aids users in identifying and
classifying the features and entities depicted in the image.

Working jointly with Technology Service Corporation (TSC), MVRsimulation has developed
an advanced physics-based IR sensor modeling capability, which is available in the domestic
release of VRSG.

This chapter describes VRSG’s notional sensor-view features and MVRsimulation’s physics-
based IR simulation in VRSG, which includes a physics model.

The VRSG sensor view is a user controllable image that is designed to model two levels of
thermal views of fidelity:

e Physics-based — VRSG’s physics-based IR uses a physics-based model licensed from
TSC, in conjunction with IR rendering technology developed by MVRsimulation,
featuring real-time computation of the IR sensor image directly from the visual database,
without the need to store a sensor-specific database. This real-time model combines
automatic material classification of visual RGB imagery, and a physics-based IR radiance
and sensor model.

e Material-based — On a per-material basis, you can provide thermal radiance profile data
as a function of time-of-day. The fidelity of the radiance profile data is under user
control. Notional data may be supplied for installations requiring ITAR export
compliance. You can also provide radiance profile data that was derived from a third-
party physics-based model.

VRSG’s notional sensor-view features

Operation of the basic VRSG sensor view does not impact the capabilities of normal out-the-
window visual channels. VRSG is capable of switching between out-the-window and sensor
modes with single-frame latency.

7-2 MVRsimulation VRSG User’s Guide

The images below depict a VRSG out-the-window view on the left and the corresponding
notional thermal IR in white-hot mode view on the right. The sensor scene shows the heated
engine and wheels of the truck entity; these parts are hot from the movement of the vehicles
relative to the surrounding environment. The scene also shows the characters in the vehicle
and standing on the street.

3 - T - :
VRSG view with daylight conditions without sensor effects. VRSG'’s notional white-hot IR view of the same scene.

A VRSG visual channel can dynamically switch between the following types of views, as
shown in the following images:

e Normal out-the-window (OTW).
e Electro-Optic (EO) or daylight television mode (Day TV) sensor.

e FLIR (Forward-looking infrared) white hot, where thermally hot areas are gradations
of white.

e FLIR black hot, where thermally hot areas are gradations of black.
e Fusion options of EO with White Hot or Black Hot.

Chapter 7 Working With Sensor-View Modes and Physics-Based IR 7-3

You can also manually set a sensor view in VRSG by typing the keyboard letter “O”, which
gives you engineering-level access to the sensor mode.

Daylight TV (DTV) electro-optic (EO) sensor

The EO sensor simulated by VRSG captures the intensity component of the human’s visible
waveband. Thus a monochrome image is rendered, which is essentially a grey-scale version
of the OTW visual scene. Since the imagery captured by the sensor is in the same spectrum as
the human’s visual sensor, the same atmospheric attenuation and illumination modeling
apply.

EO sensor imagery can be degraded using the sensor post-processing effects presented in the
previous section. An EO sensor can be switched to IR or OTW with single-frame latency.

Thermal infrared (IR) sensor

Both the physics-based IR and the material-based IR require material attribution information.
In the case of 3D models, material attribution can be associated with a model’s texture maps.
For geospecific imagery, material attribution is assigned via classification of RGB color data.
These processes are described in subsequent sections.

Both the physics-based and material-based models can benefit from these additional features:

e Alternate thermal textures — VRSG switches to a different set of texture maps when
operating in IR mode. These texture maps encode the desired signature of the model to
include localized dynamic hot spots. VRSG’s military model library and human character
library supply pre-built thermal textures for IR mode. To edit textures with hot spots for
your own models, see the chapter “Manipulating Textures.”

e Dynamic hot spots — Thermal textures can encode hot spots that are dynamically blended
in as a function of vehicle activity. For example, as a vehicle starts moving, the hot spots
for the wheels or tracks are faded in. Likewise, when a vehicle stops moving, the hot spot
is faded out. Hot spots are also available for the engine compartment and the gun.

e Post-processing effects — Any sensor scene can be degraded with a variety of post
processing effects, described in subsequent sections.

Sensor post-processing effects

Built-in sensor post-processing effects are available in all sensor modes, including the visual
out-the-window mode. Post-processing effects can be changed on a frame-by-frame basis

7-4 MVRsimulation VRSG User’s Guide

with zero latency. The post-processing effects, many of which are available on the
Dashboard’s Sensor tab, are:

Noise — The scene can be degraded by a random noise pattern. Use the slider to adjust the
amount of artificial noise of the scene in all sensor modes.

Focus — The scene can be convolved with a Gaussian kernel to simulate the effects of
optical focus. You can control the intensity (degree of blur) using the “sigma” parameter
representing the shape of the Gaussian kernel. For IR modes, a small degree of blur is
recommended, as it makes the scene appear less crisp and more characteristic of an IR
sensor.

Level — Adjusts the brightness of the scene in all sensor modes.
Gain — Adjusts the contrast of the scene in all sensor modes.

Digital zoom — Many sensors offer a digital zoom capability that zooms in on an image
by multiplying the size of pixels. Digital zoom provides a blocky, aliased image as the
pixel boundaries become visible at high levels of zoom.

Motion blur effect — Simulates a blurred or smeared appearance of objects along the
direction of relative motion.

Heat refraction — Simulates the heat haze shimmer appearance of a scene when it is
viewed through a layer of heated air (produced from conditions such as jet fuel exhaust).

A/C banding — The simulation of the scrolling horizontal stripe that is produced by power
supplies that have frequencies dissimilar to the vertical retrace period of the monitor.

Automatic gain control — Maps the physics-based IR radiance range into a display
dynamic range; uses a histogram analysis of the radiance image to determine an
appropriate display dynamic range for the scene.

Polarity inversion — Typically used by IR sensors but available to all sensors, VRSG can
reverse the polarity of an image. This enables you to view the image using the polarity
that yields the greatest perceived contrast.

Depth-of-field — Simulates a range at which objects are in full focus, and a range at which
objects are at their maximum blur range. The existing blurSigma parameter indicates the
degree of blur for objects at the max blur range. The resulting image will render objects
in focus at the given focus range, with increasing blur out to the maximum blur range.

Dynamic range washout effect — Used to simulate sensor blooming effects. A value of
zero results in no washout effect; a value between 0 and 1.0 increases image intensity
while reducing contrast; a value of 1.0 results in a fully white image; a value less than
zero increasingly reduces contrast and darkens the image; a value of -1 results in a
completely black image.

Chapter 7 Working With Sensor-View Modes and Physics-Based IR 7-5

Select this option
only if you need
sensor modes. By
default this option
is not selected, so

that VRSG can — |

load faster and
consume fewer
system resources.

Setting basic sensor-view mode properties

In an integrated simulator, sensor mode properties would likely be controlled by a simulation
host, using one of the network-based interfaces (e.g. CIGI, DIS). When using VRSG in
standalone mode however, these properties may be controlled and previewed with the VRSG
Dashboard.

In the VRSG Dashboard, you set the basic sensor-view properties on the Sensor tab. First,
turn on sensor view mode by selecting the Enable Sensor Modes checkbox on the Startup
Parameter tab.

The Enable Sensor Modes option turns on EO (DayTV), infrared (IR) White Hot and Black
Hot, and night goggle vision (NGV) modes and two sensor fusion modes. It also activates the
Sensor tab on the Dashboard. If the Enable Sensor Modes option is not selected on the Startup
Parameters tab, you will not be able to use keyboard command “O” to cycle through the
visual spectrum, and the Sensor Tab will not be displayed in the Dashboard.

@ VRSG v7 Dashboard

Oceans | Shadows] VR Options] Sensor | About | Record Video]
Startup Parameters l Attach Options] Viewpoints] Graphics | Environment] Preferences | Scenarios

Output Device [0.0: NVIDIA GeForce RTX 3090 24 [V Enable Sensor Modes
[~ Enable Mission Functions
DP Port [3000 (DIS Default is 3000) [~ Enable Radar

[~ Enable 3D Sound

Exercise D |1 {0 for all) I~ Multichannel Master
¥ Enable Folder Pre-Scanning
Folders for Temain, Models, Scenarios, and Other Content ‘

N C:\MVRsimulation\VRSG\ Temain ~
3 v Remove |

i~ Input Devices

6DOF Controller: SpaceMouse Pro -
Joystick Device: Detected More Options...

Tracker: HTCVIVE

If you do not intend to use sensor modes, leave the Enable Sensor Modes checkbox
unselected; this way thermal textures will not be loaded unnecessarily.

Next, adjust various sensor effects on the Dashboard’s Sensor tab.

In VRSG, you can also choose a geospecific IR configuration file and optionally turn on
automatic gain control, as shown above.

The Post-Processing Effects settings control scene characteristics such as simulated noise,
contrast, and blur. See the previous section “Sensor post-processing effects” for a description
of each option.

7-6 MVRsimulation VRSG User’s Guide

& VRSG v7 Dashboard

Startup Parameters

Attach Options

Viewpoints | Graphics | Environment
Sensor About

Preferences | Scenarios

Oceans Shadows

Record Video

IR Rendering

Configuration:

notional model

=]

Selactfiles with a vir extension for TSC ReallR

[~ Display IR Green

VR Options
— Post-Processing Effects
Adjusts the sliders to Noise T
modify the amount of | | _——"% 4
the effect on the Focus |
sensor display. o i}
Gain
Displays a scrolling Digital Zaom |
horizlontaé st;;pe to Motion Blur |
simulate banding
!
produced by powe}’\\ Heat Refraction |
supplies that have [T~F A/C Banding
frequencies dissimilar
to the vertical retrace

period of the monitor.

Visual

physics-based model IR
Selectfiles with a json extension for MVRsimulation conﬁguration
file for
[Hajinjson ~] phystcfv-based
or notional
[+ Automatic Gain Control (AGC) sensor
simulation.

/ﬂ FusiohNglend

[Em]

Sensor mode options. '

Automatically selects the radiance minimum and maximum
range to which the display dynamic range is mapped.

Displays the scene in simulated
NVG green if the display mode
NVG is also selected.

The IR Rendering settings control the intensity (brightness) values for sensor scenes. For each
option you specify a value in the range of 0 to 255. Note that the luminance values in this
section are only for the non-physics-based mode of IR, and will not have any effect if you are
using an IR configuration file (described later in this chapter) with the physics-based model.

¢ IR Configuration is the file that contains a physics-based or material-based sensor-
rendering profile for the terrain being rendered, as described later in this chapter, in the

section “Using VRSG’s physics-based IR simulation.”

e The Display IR Green option displays the White Hot and Black Hot and fusion modes in
green, when NVG sensor mode is also selected.

Chapter 7 Working With Sensor-View Modes and Physics-Based IR 7-7

e Use the Fusion Blend slider to adjust the ratio at which to blend either of the selected
fused sensor mode options.

I Display IR Green . .
Heat Refraction | s The fusion blend ratio of

[~ A/C Banding Fused EO/IR White Hot | = Fusion Blend —————— j—=—==—T—""" the selected Fused EO/IR
White Hot or Black Hot
sensor mode.

NVG
Fused EOQ/IR White Hot

Fused EC/IR Black Hot

Sensor characteristics can also be controlled programmatically using CIGI. For more
information, see the appendix “CIGI Version 4.0 Support.”

Controlling dynamic hot spots

Entities with thermal textures can encode dynamic hot spots for the wheels or tracks, the
engine compartment, the main gun, or other custom components (such as rocket launcher
tubes). These hot spots are controlled by events within the simulation. This section describes
the details of these events.

Wheels / Tracks — These hot spots fade in as the vehicle begins motion, and fade out as the
vehicle ceases motion. All that is required to activate this feature is to move the entity, either
with the DIS protocol or with a CIGI component control as described in the appendix “CIGI
Version 4.0 Support.”

Engine compartment — The engine compartment hot spot fades in when the “power plant” bit
of the appearance mask is set. The appearance mask of an entity is conveyed in either the DIS
Entity State PDU, or with a CIGI component control. If a simulation does not stimulate this
bit, VRSG will turn it on automatically if the vehicle begins movement.

Main gun — The main gun hot spot will fade in when the entity issues a DIS FirePDU. The
heated gun barrel will retain heat for a period of time following the fire, and will slowly cool
down over time.

Custom components — the simulation may control the hot spot intensity of custom
components identified by an integer ID. A model can have up to 16 controllable components.
The wheel/track, engine compartment, and main gun components are controlled automatically
by VRSG in response to simulation events. The custom components must be explicitly
controlled by the controlling simulation (host), using CIGI or DIS interfaces.

Note: You can preview a model’s hot spots in MVRsimulation’s Model Viewer, which will
show all hot spots at full intensity. See the chapter “Previewing Models, Effects, and Terrain”
for more information.

Editing textures for sensor-view mode

For sensor-view mode VRSG loads texture files that have the extension * IR.*. The texture
maps of the military vehicle models that are delivered in MVRsimulation’s 3D content
libraries have IR alternate textures. The models include heat signatures or hot spots modeled
into their IR textures. These IR heat signatures fade in and out in response to simulation
events.

You can create alternate IR textures for any textures used in a VRSG simulation. For
example, you could modify road surfaces or building fronts to make alternative sensor view
textures. The chapter “Manipulating Textures” describes how you can create these textures.

7-8 MVRsimulation VRSG User’s Guide

The following example illustrates an original texture map for a model and how one can make
an alternate IR texture by adding hot spots to the engine compartment area of a copy of the
texture. To do so, first copy the original texture .bmp file to a new file texture-name_IR.bmp.
Next, open the texture-name_IR.bmp file in an image editing application such as Adobe
PhotoShop or in a modeling program such as Presagis Creator.

As shown in the image above, using an airbrush tool you could paint white hot spots on the
engine compartment where real-world thermal bleed-through might occur. When you are
ready to use IR texture alternates in a scene, place each IR texture file in the same directory as
its originating texture.

To test your IR hot spot textures in VRSG in a standalone situation, press the O key on the
keyboard. Doing so cycles through thermal and Day TV sensor modes and then returns to the
normal mode.

You can also test an individual model’s IR textures in the Model Viewer, as described in the
chapter “Previewing Models, Effects, and Terrain.”

Using VRSG’s IR simulation

VRSG’s IR simulation uses per-material radiance profile data which provides radiance
information for each material over a 24 hour diurnal cycle. These files are stored in JSON
files in the \MVRsimulation\VRSG\IR subdirectory. When VRSG starts, all json files in
\WRSG\IR are discovered and an entry is placed for each into the IR configuration menu on
VRSG’s Sensor tab.

These radiance profiles describe how a material heats up and cools down over a 24 hour
cycle. An entry is included for every material of interest. For geospecific imagery
classification of RGB data, RGB values are included in addition to material codes.

These radiance profiles can be created manually, or by using our IRSetup utility. When using
IRSetup, the physics-based Model from TSC is used to produce the radiance profiles.
Manually created radiance profiles can be used also, in export-controlled situations where use
of IRSetup is not allowed. With the file format understood, it would also be possible to use a
third-party physics-based model to create the radiance profiles.

Chapter 7 Working With Sensor-View Modes and Physics-Based IR 7-9

For geospecific imagery applied to terrain, VRSG allows for the real-time material
classification of the visual database using the visual spectrum RGB colors. In other words,
materials are inferred from the colors of the visual spectrum database. The construction and
storage of a sensor-specific database is not required. The required sensor database
information is generated on-the-fly from the visual spectrum database. As shown in the
following example, which uses 2 cm per-pixel imagery captured by MVRsimulation’s
imagery data collection UAV, the higher the resolution of the imagery, the more detailed the
resulting sensor view.

VRSG real—tie rendering of 2 cm terrain uilt with imagery VRSG screen capture of the 2 cm 3D terrain on the left in
collected by MVRsimulation’s SUAS of a target range at the sensor view. The higher the resolution of the visual database,
Naval Air Station (NAS) Fallon Range Training Complex. the more accurate the IR profile for sensor simulation.

For scene elements that are not geospecific terrain, VRSG allows for the explicit assignment
of material codes to these elements. Material codes can be assigned at the per-model level, the
per-texture level, or at the per-polygon level.

The VRSG image below to the left shows MVRsimulation’s Afghanistan village 3D terrain at
midnight. Notice the warmer vegetation and the cooler asphalt road and concrete structures.
The cooler 3D structures are difficult to discern as they have cooled to an even temperature
and blend into the background.

The VRSG image below to the right shows the same area in the afternoon, after the sun has
heated the asphalt road and the stucco sides of the buildings. The vegetation is cooler than the
concrete and asphalt structures heated by the sun. This example illustrates thermal inversion.

VRSG physics-based sensor image at midnight. VRSG phyis-aed sensor image of the same area in the early
afternoon.

7-10 MVRsimulation VRSG User’s Guide

Using a physics-based sensor model or the material-based model involves providing VRSG
with material code attribution of the scene elements. For geospecific imagery, this means
providing a material palette that maps visual-spectrum RGB color values to material codes
from TSC’s material library. This takes place in the IR Setup utility described below. For
geotypical content such as moving models, buildings, 3D vegetation models, and so on, you
can choose among three mechanisms for providing material attribution:

e By using the “-material” command in the cultural feature file (vrsg.clt) or ModelMap.ini
file. This command assigns the given material to all polygons in the model.

e By providing a table to map textures to materials. You use the file vrsg.json to map
texture file names to material codes from the TSC library.

e By building material codes into an OpenFlight model before converting it to
MVRsimulation’s HPX model format.

A 24-hour cycle IR view from VRSG, showing the thermal progression starting at 12:00 midnight.

Setting up physics-based IR configuration

For US domestic users who can use physics-based IR, the IRSetup utility is the easiest way to
produce a json file containing a radiance profile. This section describes how to use the
IRSetup utility. The process of creating a radiance profile manually is described in a later
section.

You use the IR Setup utility to describe the sensor’s spectral response within its waveband of
interest, train the material classifier, and specify the environmental characteristics that
influence the appearance of an IR scene.

Chapter 7 Working With Sensor-View Modes and Physics-Based IR 7-11

To start the IR Setup utility:

1. From the Windows Start menu, choose All Programs > MVRsimulation > VRSG Setup
for Physics-Based IR. The welcome screen will be displayed:

Q MVRsimulation VRSG IR Setup X

This wizard will guide you through the steps necessary to setup the
realtime IR environment for VRSG

Copyright® MVRsimulation Inc., 2012-2023. All ights reserved M/ Fsimulation
Portions copyright by Technology Service Corporation

The use of this software is restricted to United States Persons and is
subjectio your acceptance of the terms and conditions of the
MVRsimulation Software License Agreement.

This software may not be exported without explicit authorization from the
U.S. Department of State.

For additional usage and licensing assistance. please email
license@MVRsimulation.com.

Cancel

2. Click Next to move to the Time and Place screen:

@ MVRsimulation VRSG IR Setup -Time And Place X ‘

Enter the appoximate position of your area of interest, and
the date and time. This is used to compute the sun angle
for various times of day.

tainde P00 [0 [Nem <]
Longitude J%— ,39— ID— [west =]
bay o -]
Month [Jume =]

<Back Next > Cancel

3. Click Next to move to the Sensor Characteristics screen:

e MVRsimulation VRSG IR Setup - Sensor Characteristics X

Define the waveband of your sensor.

Lower Cutoff Limit lm— microns
Upper Cutoff Limit 5.0 microns

<Back I Next > I Cancel

7-12 MVRsimulation VRSG User’s Guide

Enter the lower and upper cutoff wavelength limits of the sensor you are simulating. The
sensor is defined by its wavelength limits, given in microns. For example, a mid-
wavelength IR sensor might use a lower cutoff limit of 3.0 microns and an upper cutoff
limit of 5.0 microns. A long-wavelength sensor might use a lower cutoft of 8.0 micros
and an upper cutoff of 12 microns.

4. After entering the sensor waveband, click Next to advance to the Material Classification
screen.

e MVRsimulation VRSG IR Setup - Material Classification X

Associate up to 5 colors with materials. These colors will help the realtime classifier map visual specturm colors to
IR material codes. Selecta material from the menu and define the visual spectrum color. Colors mustbe givenin
the range 0.255.

Material Red Green Blue
|vegetation (5 mm water) . wet. wo-sided. long texture (4030) -] |50 |30
[steel 2.5 em, 25 degC interior. painted (100311) -] |130 |130 |120
[Rocket plume (500) =] |21u |21u |21u
|wood 2 em, white paintinterior 20 deg C (250121) -] |u |u |u
|<NotDefined> =l o [o

<Back I Next> | Cancel |

5. You use this screen to train the real-time material classifier. Enter classification
information for up to 5 materials by selecting their material code from a row on the left
side of the screen, and then providing the corresponding RGB values. During runtime,
colors from the geospecific imagery are used to infer characteristics of materials
necessary for the IR physics model.

Different material classification palettes are likely needed for different geographic areas,
different seasons within those areas, and different types of sensors used to collect the
imagery. MVRsimulation recommends taking screen captures of representative materials
you want to classify from your visual database. Then, open a selection of those screen
captures in an image editor such as Corel Paint Shop Pro or Adobe Photoshop and
determine the average RGB values of these materials. During runtime, colors from the
visual database rarely exactly match colors from your material palette. The resulting
material is generally a blend of all materials in your palette, those materials having a
closer proximity in color space receiving a greater weighting in the interpolated result.

The state-of-the-art in automatic material classification has its limitations. When differing
materials are similar in color, the classification process will have trouble distinguishing
between them. Furthermore, misclassification is common using auto-classification. For
example, a dark shadow cast by a tall mountain may make the terrain in the shadow
appear similar in color to asphalt, which is dark by nature. These limitations are inherent
in any auto-classification system, whether it is an off-line system or real-time such as this
one. For large geospecific databases, there is rarely corresponding material attribution
information collected, so in such cases auto-classification is the only practical option.

Chapter 7 Working With Sensor-View Modes and Physics-Based IR 7-13

After completing the material
Environment screen.

classification palette, click Next to advance to the

@ MVRsimulation VRSG IR Setup - Environment

Qam 3am 6am 9am Noon 3pm 6pm 9pm
Air Temperature IQD— L 18 l21— IT IT IT |24— Celcius
Wind Speed lﬂ— |7— IS— |9— lr lr IT IT Meters/Second
Wind Direction IW IW IW 270 IF IF IF IF Degrees (Clockwise from North)
Humidity IG‘B‘— |72— l81— |72— ISB— |52— |51— |54— Relative, 0.100%
Cloud Cover IF IF lr 017 ID— ID— 0.37 IW 0.0 . 1.0 (Full Solar Transmission)
Visual Range lK lK lK lK lﬁ lﬁ lﬁ lﬁ Kilometers
Rain Rate IF IF IF IF IF IF IF IF Milimeters/Hour
<Back [Nex> | Cancel |

On this screen, enter the factors of the environment that the physical model requires for
its computation. When you have finished, click Next to advance to the final screen.

Q MVRsimulation VRSG IR Setup - Finish

Select a file to outputthe IR configuration to:

CAMVRsimulationVRSGIR\Defaultjson

Click to build the VRSG IR configuration file

Browse... I

Build Configuration File

<Back | Fmen | Cancel |

Click the Browse button to create or select a filename for the IR configuration. The
produced configuration file will have the extension “.json” and must reside in VRSG’s IR
subdirectory. VRSG will not find the IR configuration file if it is not created in this

directory.

Once you have created or selected the directory path and name of the output
configuration file, click Build Configuration File to build the IR configuration file. After
a few seconds, notification message will appear stating that the process is complete and
you can click Finish to exit from the IR configuration setup wizard.

7-14 MVRsimulation VRSG User’s Guide

IR configuration
file for nominal
or physics-based
IR simulation.

When you next start VRSG and click Enable Sensor Modes on the Dashboard’s Startup
Parameters tab, you should see your new IR configuration listed in the IR Configuration
menu on the Sensor tab:

@ VRSG v7 Dashboard

Startup Parameters | Attach Options Viewpoints Graphics | Environment Preferences | Scenarios Qceans Shadows

VR Options Sensor About | Record Video
—Post-Processing Effects IR Rendering
Noise J| Configuration:
[Selectfiles with a .vir extension for TSC ReallR
Focus | physics-based model
Level JI Selectfiles with a json extension for MVRsimulation
notional model
f I
Gain |
Digitsl Zoom | oo on =
" v Automatic Gain Control (AGC)
Motion Blur |
] |~ Display IR Green
HeatRefraction |
[~ AJCBanding Visual LI Fusion Blend i,

Manually creating a radiance profile

The IRSetup utility is under ITAR control, which prevents its use in non-US domestic
environments. The radiance profile can be created manually, which is useful for populating
with notional data or data from a third-party physics-based model. This section describes the
format of the file to enable you to produce one manually.

The file uses the popular JSON format, which is human-readable ASCII. The JSON format is
a highly structured format. There are tools available on the web to assist in syntax checking of
JSON files. They can also be created/edited in a simple text editor such as Notepad.

MVRsimulation recommends using a working file as a starting point, such as the Afghan.json
sample provided in the \MVRsimulation\VRSG\IR subdirectory. The description below
explains the contents of the Afghan.json file, which should enable you to create your own
customized radiance profile.

The first datum in the file is a version identifier. At the time of this writing, the current
version is 1. The version entry in the file will appear as follows, indicating version 1:
"version":1,
The second entry is an array of materials, as indicated by this line:
"materials": [

What follows is a set of lines for each material that describe an example entry for a given
material:

{
"code": 3111,
"description": "sand (light) 20 cm, 10 degC interior rock
texture",

Chapter 7 Working With Sensor-View Modes and Physics-Based IR 7-15

"rgb": [209, 183, 1267,

"shade™: [1.29,1.25,1.23,1.36,1.46,1.53,1.63,1.43],

"inSun": [1.36,1.31,1.30,1.50,1.55,1.65,1.71,1.55]
}y

The “code” line indicates the integer material code. Material codes can be assigned to
textures, polygons, or to entire models. How material codes get assigned to content is
described in the following section.

The “description” line is used for documentation purposes only, it does not affect the
simulated sensor scene.

The “rgb” line indicates the color values for a material given in red, green, and blue
intensities. The valid range of intensities is 0 .. 255. This color value is used to auto classify
geospecific terrain imagery. You should only include the RGB line for materials that you
want to use with geospecific imagery. This should be a very bounded set of materials, we
recommend using no more than 5 materials with the RGB line provided.

The “shade” line indicates the material radiance values for a 24 hour diurnal cycle, of the
material not affected by sunlight. You can supply a single value if desire a constant radiance
across the diurnal cycle. In this example, 8 values are provided, corresponding to 3 hour
increments (e.g. midnight, 3:00 am, 6:00 am, etc.). If you wanted to provide hourly radiance
samples, you would enter 24 values.

The “inSun” line is similar to the “shade” line, but the material radiances correspond to
radiance values associated to the material receiving sunlight. Both the shade and inSun lines
should contain the same number of samples.

The ability to manually create a radiance profile gives you complete control over how a given
material presents in the sensor view as a function of time-of-day. Effects such as thermal
crossover between two materials can be expressed in this data. Furthermore, the physics-
based output from IRSetup can be modified to address the preferences of subject matter
experts.

Material attribution of non-geospecific content

The material classification process described in the previous section automatically generates
material attribution from visual spectrum colors. This is used exclusively for the geospecific
imagery of the terrain. For other content, such as moving models, vegetation models,
buildings, etc., there are other mechanisms of applying material attribution to this content.
These methods allow you to retrofit material attribution to existing MVRsimulation-provided
content or user-developed content.

Per-model assignment of material codes

An entire model may be assigned a material code using the “-material=N"’ command. This
command may be applied to models in ModelMap.ini or static models in a cultural feature
(vrsg.clt) file. This command assigns the given material code to all polygons in the model.
This is the coarsest, most global method of material attribution, and is useful for vegetation
models, culture, or other models where the entire model can be represented by a single
material type for IR rendering purposes. Consider this example from an entry in the
ModelMap.ini file:

1 1225110 0 Vehicle MIA2.M2.US.camo.hpy -material=100132

7-16

MVRsimulation VRSG User’s Guide

In the above example, the material “100132 — Steel 10cm, two sided, painted” would be
assigned to all polygons in the M1A2.M2.US.camo.hpy model. See the end of this chapter
for a complete list of possible material codes.

For models not given an explicit material code assignment with “-material=N", they will be
assigned a default material based on how the model is used. Models listed in the
ModelMap.ini file will be assigned a material code of “100111 - steel 2.5 cm, 30 deg.”

Models listed in the cultural features file (.clt) will be assigned a default material of “201001 -
concrete 10 cm, 10 deg", unless they are qualified as a vehicle using the “-vehicle” command.
If the model is qualified as a vehicle, the default material assigned will be “100111 - steel 2.5

cm, 30 deg.”

Per-texture assignment of material codes

For a more refined assignment of material codes, use the per-texture attribution. If a material
is bound to a particular texture, and that model was given a per-model material attribution, the
per-texture assignment will override the per-model assignment. Any textures in the model not
given an assignment will use the per-model attribution. Thus you can use per-model
attribution for quick and coarse attribution, and per-texture assignment as needed to achieve
the desired level of attribution fidelity.

To establish a per-texture attribution, create an ASCII file named “vrsg.irm.” This file can
reside in any directory in VRSG’s search path. For example, you might have a unique
vrsg.irm file per terrain. VRSG supports multiple vrsg.irm files; you can store them in
subdirectories of models to which the vrsg.irm files apply. Bear in mind that search path order
is important; VRSG loads the first directory it finds. For this reason, consider putting a
default vrsg.irm file in the \MVRsimulation\VRSG\Textures directory, or editing the default
vrsg.irm file already in that directory. You can check VRSG’s info log to verify the correct
location of vrsg.irm was loaded.

The format of vrsg.irm is simple. Each entry contains the mapping of one texture to a material
code on one line, for as many lines as required.

Consider the following example vrsg.irm entries:

door large 05 400121
juniper-tree-branch 4019

road dirt 201001
roads 201001
roof-tile-brown03 109020
roof-tile-dark-brown-02 501020
wall sand 06 201001

You can find another example IRM file at:
\MVRsimulation\VRSG\Terrain\Afghanistan\vrsg.irm.

Per-polygon assignment of material codes

Per-polygon binding of material codes is the strongest binding possible. Per-polygon
attribution of material codes will override per-texture attribution, which will in turn override
per-model attribution. Most models in the VRSG model library do not have per-polygon
attribution, so either per-texture or per-model attribution will be required. MVRsimulation’s
HPY models are not user-editable, so you will not be able to retrofit per-polygon attribution
to HPY models. Per-polygon attribution is most useful for user-developed models using the

Chapter 7 Working With Sensor-View Modes and Physics-Based IR 7-17

Presagis Creator model editing tool. See the “Assigning polygon material codes” section of
this chapter for details about assigning material codes to models.

Dynamic moving model signatures

VRSG physics-based and material-based IR users benefit from dynamic moving model
signatures. These dynamic signatures are not purely physics-based, rather they are physics-
correlated and they provide additional stimulus for training benefit. Dynamic moving model
signatures are caused by activities of the vehicle that influence its IR signature. Examples are
a running engine warming a portion of the vehicle, the wheels or tracks becoming heated due
to motion, or the gun barrel becoming hot as the result of firing a round.

The simulation network generally does not provide enough detailed information for these
dynamic effects to be run though the physics model. In addition, the simulations themselves
most likely do not model the vehicle to the fidelity required to run surface temperatures
though a physics model. Together VRSG and its physics-based IR component work around
these limitations by allowing additional display intensity to be blended into the underlying
surface temperatures provided by the physics model. Thus the physics model is used to
compute the base display intensity of a moving model as a function of its material type and
environmental conditions, and the dynamic effects are extra display intensity, which is added
to the signature.

For VRSG to take advantage of the dynamic moving model signature capability, the models
converted to MVRsimulation’s format from either FBX or OpenFlight format must be made
compliant before conversion. Model compliance consists of polygon material assignment, hot
spot and non-hot spot textures, and metadata built into the model’s scene graph. The
following examples show how to make an FBX or OpenFlight model compliant with the
VRSG/physics-based IR component architecture. You can edit the model in your modeling
tool and then convert it to MVRsimulation’s HPX runtime model format using the conversion
utilities provided with the VRSG installation. See the chapter, “Converting FBX and
OpenFlight Formats to MVRsimulation Runtime Formats™ for more information about how to
prepare FBX and OpenFlight models for use in VRSG.

Assigning polygon material codes

If a material assignment can be made at the per-texture level, then per-polygon assignment is
not necessary. In some cases you might need to assign material codes to polygons to override
the per-texture assignment.

To assign the IR material code to a face in Presagis Creator:
1. Select the set of faces to apply the material code to.
2. Choose the Appearance tab > Modify Attributes. The Face Attributes dialog box appears.

3. Click the Other tab. In the Infrared section, enter the material code to assign to the set of
selected faces. In the example below, the selected face is assigned the IR material ID of
100142, which corresponds to steel.

7-18 MVRsimulation VRSG User’s Guide

Face Attributes : p136966

1D: p136966 (=] ® Modify All [¥] Reflect Selection
[Color | Texture | Draving | Other | DB Navigator | Comments [Interiors |
Infrared Terrain/Culture Attributes
Feature ID: 0

IR Color: —_—
07 SMC: O

Cultural Footprint

Material ID:
100142 Roofline
Terrain
LOD Control SmartScene Palette
Preserve Face NJA

Creating IR animations

Your model’s scene graph should group the faces of the model into sections or nodes that can
be addressed at runtime by VRSG as a logical unit. For example, you would place all
polygons associated with the engine compartment under one node or object, all polygons
associated with the gun barrel under a different node or object, and so on.

VRSG specific nodes for an FBX model are specified by adding prefixes to node names
within the model editing software. You can add IR animations using an FBX Null node and
giving its name the prefix IR_ANIMATION . An IR_ ANIMATION _node requires a custom
property that defines IRObjectld of the node. Child nodes inherit this IRObjectld property.
The IRObjectld property is used as an identifier when manipulating hot spots on the model.
Additionally, an IR Object Id custom property can be assigned per FBX Mesh Node. The per-
Mesh property overrides any previous IR Object Id settings. The syntax/type of this custom
property must be exact: IRObjectld / integer.

The following image shows the IRObjectld setting in the modeling tool Autodesk Maya:

L AutodeskMaya 2011 - XH_GLAUNCHER b e T SRR

Animation Dynamics

LO 7
Chanels Edit Object Show
XH_GLAUNCHER

Displayable

Vector ® Integer

Fioat Bodlean
Attribute Type

® scalar
SHAPES

Numeric Attribute Properties XH_GLAUNCHERShape
Minimum:
Maximum
Default:

Enum Hames

Layers Options Hel

Chapter 7 Working With Sensor-View Modes and Physics-Based IR 7-19

In an OpenFlight model, once you have completed the grouping, you can add comments to
the object that enable VRSG to treat the set of geometry as an IR animation.

To add comments to the object in Creator for an OpenFlight model:

1. Select the object to assign metadata to. The object should be an engine, tracks, or gun
barrel group.

2. Choose Attributes > Modify Attributes. The Object Attributes dialog box appears.
3. Click the Comments tab.

4. Inthe Comments field, type “IR Animation engine” if this object is for an engine
compartment, “IR Animation track” if this object represents the tracks or wheels, or
“IRAnimation gun” if this object represents the vehicle’s gun.

The example above shows the set of polygons of an M1’s engine compartment being assigned
to group with the IRAnimation metatags. You can have multiple objects in the model with the
same IRAnimation metatags associated with them if that is more convenient for the modeling
process. For example, you could put the left and right tracks of a vehicle under two separate
objects, both attributed with the “IRAnimation track” metatags.

VRSG will create implicit IR animations for articulated parts, so if your model employs
articulated parts, you may not need to define an explicit IR animation.

The following rules apply to implicit IR animations:

o Geometry under a DOF node that is attributed as a Primary Gun (part 4416) will be
considered a gun for IR hot spot blending purposes.

o Geometry under a RotatingAnimation or a TextureAnimation will be considered as
wheels/tracks for IR hot spot blending purposes.

e Geometry that is not under any of the above will be considered as the engine
compartment for IR hot spot blending purposes.

Assigning IR textures

The final stage in model compliance is assigning IR textures to the model. You do not need a
modeling tool for this task; you simply provide alternate textures for the model that can be
used in IR mode by VRSG. VRSG uses the following convention for using IR textures for a
model:

If a visual spectrum texture is named fexture _name.ext, VRSG will load texture name IR.ext
to use in IR mode. This texture should contain the hot spots for the dynamic signature
portions of the vehicle. VRSG will also attempt to load texture_name IR_NHS.ext for the
same texture. This texture should be the IR signature of the vehicle without hot spots (that is,
the vehicle in a cold state). If no visual spectrum (non-hot spot) texture is provided, the
vehicle will always be displayed with hot spots, regardless of simulation events. If both the
hot spot and non-hot spot textures are provided, VRSG will display a blending between these
two textures as a function of time and simulation events. For example, the engine
compartment will gradually heat up when the engine is started, and slowly cool down when
the engine is turned off.

Whenever possible, you should use models with model-specific textures rather than generic
textures; doing so it makes it easier to identify which portions of the vehicle the texture map
applies to. A model-specific texture is typically a mosaic of photographs or artwork of

7-20

MVRsimulation VRSG User’s Guide

different sides of the vehicle. With model specific textures, the places to add hotspots can be
readily identified.

The following three images show an M1 model texture in the visual spectrum, IR with hot
spots, and IR without hot spots:

ae = N N

Material codes

The following table provides the set of available material codes supported by
MVRsimulation’s physics-based IR. These materials are to be assigned to polygons, vertices,
or texels in the visual database and moving models.

Material code Description

270 270 K calibration
275 275 K calibration
280 280 K calibration
285 285 K calibration
290 290 K calibration
293 293 K calibration
295 295 K calibration
300 300 K calibration
305 305 K calibration
310 310 K calibration
313 313 K calibration
315 315 K calibration
320 320 K calibration
330 330 K calibration
340 340 K calibration

Chapter 7 Working With Sensor-View Modes and Physics-Based IR 7-21

Material code Description (continued)

350 350 K calibration

500 Rocket plume

502 Turbofan plume

2000 water at 0 C

2010 water at 10 C

2011 snow/ice (-10 C)

2012 snow/ice (-25 C)

2019 water at 10 C with sea texture

3110 sand (light) 20 cm, 10 degC interior

3111 sand (light) 20 cm, 10 degC interior rock texture
3112 sand (light) 20 cm, 10 degC short texture

3115 sand (light) 20 cm, 10 degC interior

4012 leaf (5 mm water) two-sided

4019 tree foliage (5 mm water) two-sided, short texture
4028 vegetation (5 mm water) two-sided, synthetic texture
4029 vegetation (5 mm water) two-sided, long texture
4030 vegetation (5 mm water) , wet, two-sided, long texture
4110 grass 20 cm, 10 degC interior

4119 grass 20 cm, 10 degC interior, synthetic texture
4120 grass 20 cm, 10 degC interior, wet, synthetic texture
4210 grass, dry

4212 grass, wet

4214 grass, dry, shadow

4301 Tree canopy

7110 asphalt 20 cm, 10 degC interior

7111 asphalt 20 cm, 10 degC interior, road texture

7-22 MVRsimulation VRSG User’s Guide

Material code

Description (continued)

20100

explosion, 1,000 C

100111

steel 2.5 cm, 30 degC interior, painted

100112

steel 2.5 cm, two-sided, painted

100121

steel 5 cm, 30 degC interior, painted

100122

steel 5 cm, two-sided, painted

100131

steel 10 cm, 30 degC interior, painted

100132

steel 10 cm, two-sided, painted

100141

steel 1 cm, 30 degC interior, painted

100142

steel 1 cm, two-sided, painted

100151

steel 1 cm, 60 degC interior, painted

100153

steel 1 cm, 50 degC interior, painted

100155

steel 1 cm, 40 degC interior, painted

100211

steel 2.5 cm, 20 degC interior, painted

100221

steel 5 cm, 20 degC interior, painted

100231

steel 10 cm, 20 degC interior, painted

100241

steel 1 cm, 20 degC interior, painted

100311

steel 2.5 cm, 25 degC interior, painted

100321

steel 5 cm, 25 degC interior, painted

100331

steel 10 cm, 25 degC interior, painted

100341

steel 1 cm, 25 degC interior, painted

100441

steel 1 cm, 10 degC interior, painted

101111

steel 2.5 cm, 40 degC interior, painted

101121

steel 5 cm, 40 degC interior, painted

101131

steel 10 cm, 30 degC interior, painted

101141

steel 1 cm, 40 degC interior, painted

101211

steel 2.5 cm, 60 degC interior, painted

Chapter 7 Working With Sensor-View Modes and Physics-Based IR 7-23

Material code Description (continued)

101221 steel 5 cm, 60 degC interior, painted

101231 steel 10 cm, 60 degC interior, painted

101241 steel 1 cm, 60 degC interior, painted

101242 steel 1 cm, 40 degC interior, painted

102141 steel 1 cm, painted, 200 degC interior flow
102142 steel 1 cm, painted, 250 degC interior flow
102143 steel 1 cm, painted, 100 degC interior flow
102151 steel 1 cm, painted, 200 degC interior flow, engine covers
103111 steel 2.5 cm, 20 degC interior, painted ,engine cover sides
103211 steel 2.5 cm, oil-filled, 20 degC interior, painted
104000 steel door with air space (composite)

105000 steel 1 cm, two-sided, spectral emissivity
108100 steel painted, fixed 100 C, exhaust port

109020 steel painted, fixed 20 C

109035 steel painted, fixed 35 C

109040 steel painted, fixed 40 C

109050 steel painted, fixed 50 C

109060 steel painted, fixed 60 C

109080 steel painted, fixed 80 C

109100 steel painted, fixed 100 C

109200 steel painted, fixed 200 C

109500 steel painted, fixed 500 C

110111 aluminum 1.0 cm, 10 degC interior

110112 aluminum 1.0 cm, two-sided

110121 aluminum 1.0 cm, 20 degC interior

110131 aluminum 1.0cm, 30 degC interior (vesna)

7-24 MVRsimulation VRSG User’s Guide

Material code

Description (continued)

110161

aluminum 1.0 cm, 100 degC interior

111111

aluminum,painted, 1.0 cm, 10 degC interior

111121

aluminum,painted, 1.0 cm, 30 degC interior

111122

aluminum, painted, 1.0 cm, two-sided

111151

aluminum,painted, 1.0 cm, 50 degC interior

111201

aluminum,painted, 1.0 cm, 100 degC interior

112201

aluminum,painted, 1.0 cm, 200 degC interior flow

113005

aluminum 1.0 cm, two-sided leading edge

113010

aluminum 1.0 cm, two-sided leading edge

113105

aluminum 1.0 cm, 10 degC interior leading edge

113110

aluminum 1.0 cm, 10 degC interior leading edge

138111

steel 2.5 cm, 20 degC interior, painted, exhaust port sides

201001

concrete 10 cm, 10 degC interior

201002

concrete 10 cm, two-sided

201005

concrete, white paint, 10 cm, 10 degC interior

201011

concrete 30 cm, 10 degC interior

201012

concrete 30 cm, two-sided

201021

concrete 20 cm, 10 degC interior

201101

cinder block

250121

wood 2 cm, white paint,interior 20 deg C

251112

roof tile 2.5 cm, interior 20 degC

300112

brick 10 cm cold chimney (2-sided)

300313

brick 10 cm for hot chimney (50 degC interior, 1 m/sec flow)

301112

roof tile 2.5 cm, interior 20 degC

400121

wood 2 cm, white paint,interior 20 deg C

400152

wood 20 cm, two-sided, bark exterior

Chapter 7 Working With Sensor-View Modes and Physics-Based IR

7-25

Material code

Description (continued)

400321

wood 10 cm, black paint, interior 20 deg C

500101 window glass, 0.5 cm, 20 degC interior
501020 Rubber, 1 cm, 20 C interior

501045 Rubber, 1 cm, 45 C interior

502020 Canvas, 2mm, 20 cm interior

600111 Plexiglas, 1 cm, 20 C interior

7-26 MVRsimulation VRSG User’s Guide

CHAPTER 8

Converting FBX and OpenFlight Formats
to MVRsimulation Runtime Formats

Delivered with VRSG are utilities for converting models in FBX and OpenFlight format to
MVRsimulation’s model format. These tools enable you to both use your existing FBX or
FLT formatted models in VRSG and to create your own FBX or OpenFlight models with
your own modeling tools for use in VRSG. VRSG is also delivered with utilities for
converting OpenFlight terrain to MVRsimulation’s round-earth VRSG terrain format (MDS).
These tools provide the means of both reusing legacy OpenFlight terrain in VRSG and the
ability to create new terrain in OpenFlight format with tools such as Presagis Creator or Terra
Vista.

This chapter describes how to convert FBX and OpenFlight models and OpenFlight terrain
databases to MVRsimulation’s runtime formats so that you can visualize them in VRSG
scenes. This chapter also includes some considerations for CityEngine models exported to
FBX or FLT format. Finally, the chapter describes recommendations for storing your site’s
own models within \VRSG\Models subdirectories.

Converting the FBX model format

MVRsimulation’s Fbx2Hpx utility converts a FBX-formatted model to MVRsimulation’s
HPX model format for rendering in Virtual Reality Scene Generator (VRSG).
MVRsimulation’s support of Autodesk's popular FBX model format enables modelers to use
a number of third-party modeling tools including Autodesk 3ds Max, Autodesk Maya, and
Luxology Modo, to create models for use within VRSG.

Similar to MVRsimulation’s OpenFlight to HPX converter described later in this chapter,
Fbx2Hpx is a command-line utility that imports a FBX model and exports it as an HPX
model. A number of MVRsimulation-specific custom attributes (node names and properties)
are supported in the FBX model converter to include node types that are needed for models
used in visual simulation. A model of interest can be created in any modeling tool that
enables you to create polygonal geometry, use custom attributes, and export the model to
FBX format. For processing an FBX model, Fbx2Hpx accepts diffuse, normal, and ambient
occlusion (AO) texture maps. The utility is installed with VRSG in the directory
\MVRsimulation\Common\Util\Fbx2Hpx. The utility can be moved and used anywhere on
your computer hard drive.

The Fbx2Hpx utility is built with Microsoft's Visual Studio 2015. To properly execute the
tool the Visual Studio 2015 runtime needs to be installed on your machine. (You can obtain
the Visual Studio 2015 runtime installer at www.microsoft.com/en-
us/download/details.aspx?id=40784.)

8-2 MVRsimulation VRSG User’s Guide

Delivered with the Fbx2Hpx utility are several files:

The utility itself (Fbx2Hpx.exe).

The file mvr_control _rig.fbx for converting character models. This control rig defines the
transformations for each bone in MVRsimulation's standard rig. (A sample character
model in FBX format is available in the \ExampleModels subdirectory.)

MVRsimulation’s Software License Agreement.

A directory of example models (vehicle, human character, and building) in FBX and in
Autodesk Maya or 3ds Max formats, which you can examine to become familiar with
setting up a model in your modeling tool for conversion to HPX format: a vehicle model
(KVP-Towed.RU.green), a character model (human-example) and a building model in
(EBBL-Kleine-Brogel-AFB-052).

An image, MVRsimulation-FBX-Model-Conversion-Example.jpg, which contains
screenshots of the sample model KVP-Towed.RU.green in Maya and in
MVRsimulation’s Model Viewer.

A readme file.

lesk Maya 2011 1

o HE

DEHEEHDDODH

g
J
4
g
I
4
J
Z
4
I
4
g
Z
4
I
4
g
Z
g
J
4
4
4
7
J
7

MVRsimulation's FV510 model, in AutoDesk's Maya modeling tool, prior to exporting it in FBX format
for subsequent conversion to MVRsimulation's model format. A hierarchy of MVRsimulation custom
attributes is shown on the lefi.

Using the fbx2hpx utility
To use the Fbx2Hpx.exe utility:

1.
2.

Open a command-line window.

Type Fbx2Hpx.exe in a command-line window, followed by the name of the model you
want to convert, with or without any other parameters, using the syntax of the following
form:

Fbx2hpx [-f] [-g] [-1] <model-name.fbx> [<target-directory>]

Chapter 8 Converting FBX and OpenFlight Formats to MVRsimulation Runtime Formats 8-3

When you type Fbx2Hpx.exe without any parameters, a description of the parameters appears
on the screen. The parameters are:

-f to overwrite an existing HPX output file. (The default is to not overwrite a previous HPX
file of the same name.)

-q to suppress any error messages.
-1 to ignore any errors and proceed with converting the model to HPX format.
-b to allow the conversion of binary FBX files.

-nx to limit the mesh node maximum vertex count to Xx. Mesh nodes with more than x
vertices are split into multiple mesh nodes. The default value is 2000 vertices.

-a to display copyright notices and terms of usage.

The resulting HPX model will be given the same name as the FPX model (with an HPX file
extension) and will be saved in the same directory as the FBX model unless you specify a
target directory on the command line.

If you have a large number of models to convert at once, you can convert all FBX models in a
given directory by providing the input directory and (optionally a target directory).

For example:

Fbx2Hpx.exe d:\ models d:\tempc

This example converts all the FBX models in the directory d:\models and outputs the HPX
models to the target directory d:\temp.A number of MVRsimulation-specific custom
attributes (node names and properties) are supported in the FBX model converter to include
node types that are needed for models used in visual simulation. Such attributes include DOF,
LOD, rotation animation, collision mesh, and so on. You can add these custom node names
and properties to KfbxNull nodes as needed.

To ensure a smooth conversion, place the textures in the same directory as the FBX model
file. If you want, you can place the textures in a subdirectory called \Textures.

Note: Use of the FBX utility is tied to an MVRsimulation product license, which means that
you can run the utility on any machine that has a valid MVRsimulation license and active
maintenance.

Creating an FBX model for real-time use in VRSG
To create and customize an FBX model for use in VRSG:

1. In your modeling tool, create or import a model’s 3D geometry, and apply the materials
and textures.

2. Organize a DIS-compatible hierarchy with dummy groups (LOD, DOF, and so on).

3. Specify the node type for each group by its prefix, such as "LOD_<any name>" or
"DOF_<any name>."

4. Add the specific custom properties of the chosen node type: "Num Children",
"Switch Mask" and so on. See the description below for the custom properties required
for each node type.

5. Export the model to FBX file format.

8-4 MVRsimulation VRSG User’s Guide

6. Convert the FBX file to MVRsimulation’s HPX format by using the Fbx2Hpx utility.

After you convert the model to HPX format, you can inspect the model in MVRsimulation’s
Model Viewer before using it in VRSG.

-

The creation of switch masks for a new
custom attribute in AutoDesk's Maya
modeling tool for MVRsimulation's
FV510 model.

.....

/) FPalilaiia

Description of custom node types

A number of VRSG-specific custom attributes (node names and properties) are supported in
the FBX model converter, including node types that are needed for models used in visual
simulation. You can add these custom node names and properties to KfbxNull nodes as
needed.

Switch node

Governs which child node is currently being rendered. A switch node has multiple child
nodes; usually only one child node is rendered at a time. All switch nodes require the prefix
"SWITCH_" in the node's name.

Chapter 8 Converting FBX and OpenFlight Formats to MVRsimulation Runtime Formats 8-5

Custom properties:

e NumChildren - An integer representing the number of child nodes attached to the switch
node.

e SwitchMask - A string which represents the hexadecimal mask value used when
evaluating the validity of the child nodes' switch values. This is usually the bitwise union
of all child-node masks. Examples: "0x18" or "0xe00".

o SwitchValue# - A separate 'SwitchValue#' property is required for each child node of the
switch. SwitchValue properties are numbered sequentially starting at 1.
("SwitchValuel", "SwitchValue2", ...) Each SwitchValue property contains a string
representing the hexadecimal switch value. Example: "0x1000".

Degree Of Freedom (DOF) node

Allows its child nodes to be rotated around a specified axis. All DOF nodes require the prefix
"DOF_" in the node's name.

Custom properties:

e PartID - An integer node that assigns an integer ID value to this DOF. To be compatible
with the DIS standard, these values should be multiples of 32. PartIDs can also influence
the IR Object Id of any child meshes. PartID values of 4416 and 4096 are treated as gun
IR objects. PartID values of 4064 are treated as wheel IR objects. By default a child mesh
of'a DOF node is treated as a hull IR object. See the description of IRObjectld for further
details.

e Axis - An enum node that indicates which primary axis the DOF rotates around. Values
of 0, 1, and 2 are used to represent the X, Y, and Z axes, respectively. If a rotational or
translational transformation modifies this node, this transformation is applied to the nodes
child meshes.

Level of Detail (LOD) node

Determines which child mesh will be displayed, based on the distance between the eyepoint
and the centroid of the LOD node's bounding sphere. The bounding sphere encompasses the
LOD node and all of its child nodes. All LOD nodes require the prefix "LOD _" in the node's
name.

Custom properties:

e MaxDistance - An integer representing the maximum distance (in meters) between the
bounding sphere centroid and the eyepoint. This LOD node will not be visible if the
eyepoint moves beyond this distance.

e MinDistance - An integer representing the minimum distance (in meters) between the
bounding sphere centroid and the eyepoint. This LOD node will not be visible if the
eyepoint moves closer than this distance.

e NumThresholds - An integer representing the number of child meshes of the LOD node.

e ThresholdsLevel# - An integer representing the switch-in distance (in meters) for each
child node; a separate "ThresholdsLevel#" property is required for each child node.
ThresholdsLevel properties are numbered sequentially starting at O ("ThresholdsLevel0",
"ThresholdsLevell", ...) and should be sorted in increasing order from minimum to
maximum. Thus, child 1 will be visible when the eyepoint distance is between

8-6 MVRsimulation VRSG User’s Guide

ThresholdsLevelO and ThresholdsLevell. Beyond that distance, child 2 will become
visible, and then child 3 will become visible, and so on. The model will disappear
beyond MaxDistance.

Animation node

Cycles through its child nodes one at a time, over a specified duration. This node can be
thought of as a flip-book animation. All Animation nodes require the prefix
"ANIMATION " added to the node's name.

Custom properties:

e Duration - A floating-point value that indicates the duration of the animation cycle, in
seconds.

e Looping - A Boolean that indicates whether the animation is one-time animation or a
looping animation.
e NumChildren - An integer indicating the number of child nodes of the Animation node.

Fire Animation node

Also defines a flip-book animation; one that displays all its child nodes over a specified
duration. Fire Animation nodes are always one-time animations. All Fire Animation nodes
require the prefix "FIRE_ ANIMATION " in the node's name.

Custom property:
e Duration - A floating-point value that indicates the animation duration in seconds.

Rotating Animation node

Governs rotation rates on objects that are either velocity - dependent or duration-dependent.
For example, wheel meshes on vehicles would use this node. All Rotating Animation nodes
require the prefix "ROTATING _ANIMATION " in the node's name.

Custom properties:

e VelocityDependent - A Boolean that indicates if the rate of animation of this node should
be velocity-dependent. If the node is velocity dependent, the Radius property is used to
govern the rate of rotation. If the node isn't velocity dependent, the AnimationDuration
property is used to govern rate of rotation.

e Radius - A floating-point value that indicates the radius of the object, in meters. This
value is used to determine rotation rate based on velocity.

e AnimationDuration - A floating-point value used to indicate duration (in seconds) of non-
velocity-dependent animations.

e Axis - An enum that indicates the principle axis of rotation. Values of 1, 2, and 3 are used
to represent the X, Y, and Z axes, respectively.

e DirectionX/Y/Z - Three distinct properties that define rotation around an arbitrary axis.
Used to have the mesh rotate around an axis other than a principle/primary axis.
IR Animation node

Assigns an IR object Id to all child nodes. All IR Animation nodes require the prefix
"IR_ANIMATION " in the node's name.

Chapter 8 Converting FBX and OpenFlight Formats to MVRsimulation Runtime Formats 8-7

Custom property:

e [RObjectld - An integer value that indicates the IR object Id to be assigned to all of the
node's children.

For more information about the creating IR animations for an FBX model, see the chapter,
“Sensor Views and Physics-Based IR.”

Texture Animation node

Defines a UV animation for all child nodes. Such nodes can be used to simulate the motion
of the track texture on a tracked vehicle such as a tank. All Texture Animation nodes require
the prefix "TEXTURE_ANIMATION " in the node's name.

Custom properties:

e uvRadius - A floating-point number indicating the radius (in meters) of the object being
animated. This value is used to determine the rotation rate based on the vehicle's
velocity.

e uRate - A floating-point number controlling how fast the texture will animate in the
u- direction (if at all).

e vRate - A floating-point number controlling how fast the texture will animate in the
v-direction (if at all).

For both uRate and vRate, a value of 0 prevents the texture from animating in that direction.
A nonzero value implies motion in that dimension, and it should be interpreted as having the
units as "textures/meter."

For example, if the model uses a tiling tread texture that represents two meters of tread-length
along the u parameter, then the uRate and vRate values should be 0.5 and 0, respectively.
With these values, the texture would cycle once (along u) for every two meters of motion.

Light Point node

Defines one or multiple light points. Light points emit a colored light from a specific location.
To define light points in an FBX model requires a minimum of two nodes. The first node is a
LightGroup node. Child nodes of the LightGroup node represent the individual light points.
The LightGroup node specifies the properties that are inherited by all child LightPoints.
LightGroup nodes require the prefix "LIGHTGROUP_" added to the node's name. Light
points require the prefix "LIGHTPOINT " added to the node's name.

LightGroup custom properties:
e Period - A floating-point number indicating the length of the animation cycle in seconds.

e TimeOn - A floating-point number indicating the duty cycle for the light points in
seconds. Blinking lights will have a TimeOn less than the Period.

e Diameter - A floating-point number indicating the real-world diameter of the light points
in meters.

e MinSize - A floating-point number indicating the minimum size in pixels of the light
points diameter.

e MaxDist - A floating-point number indicating the maximum distance in meters that the
light points are visible.

8-8 MVRsimulation VRSG User’s Guide

e Az - A floating-point number indicating the number of degrees relative to North that light
points are visible.

e El - A floating-point number indicating the number of degrees relative the ground plane
that the light points are visible.

e VFov - A floating-point number defining the full-angle vertical field-of-view in degrees.
For omni-directional lights a value of 180 degrees should be used.

e HFov - A floating-point number defining the full-angle horizontal field-of-view in
degrees. For omni-directional lights a value of 180 degrees should be used.

e RotRate - A floating-point number indicating the rotation rate in degrees per seconds.
For omni-directional light points a value of 0 should be used.

e Texture - A string containing the name of the custom texture to be used when rendering
the child light points.

e SkipAttenFlags - Flags define a bit mask indicating special treatment of a light string.
The value of flags is a logical OR of all desired features. The current set of features
includes:
0x1 - do not perform angular attenuation on the top edge of a light's fov
0x2 - do not perform angular attenuation on the bottom edge of a light's fov
0x4 - do not perform angular attenuation on the right edge of a light's fov
0x8 - do not perform angular attenuation on the left edge of a light's fov

Each SkipAttenFlags property contains a string representing the hexadecimal value; for
example: "0x3".

LightPoint nodes are Mesh nodes that define a single light point vertex. A light point vertex
consists of position (X, Y, Z), phase (P) and intensity (A) and color (R, G, B). X, Y, Z are
defined by the Mesh's control points. Phase (P) indicates the phase delay in seconds of the
current light point. Both phase (P) and intensity (A) are stored in the Mesh's UV layer. R, G,
B are stored in the Diffuse property of the Mesh's material layer. There are no custom
properties for a LightPoint node. For more information about creating FBX light points, see
the chapter “MVRsimulation Model Format.”

External Reference node

Defines an external model file that will be loaded into the FBX model's scene graph. The
node's native attributes scale, rotation, and translation are used to transform the external
model. External reference nodes require the prefix "XREF " added to the node's name.

Custom properties:
e File - A string containing the external reference model's filename.

e SaveLink - A Boolean which determines if the model is an external reference (true) or if
the model's geometry is integrated into this model (false).

e Appearance - A string that represents the hexadecimal appearance value that will be used
to render the external reference model.

Chapter 8 Converting FBX and OpenFlight Formats to MVRsimulation Runtime Formats 8-9

Collision Mesh node

Defines a collision geometry node and is primarily used with rigged (character) models. A
Collision Mesh node is not rendered but is used during intersection testing. All KFbxMesh
nodes that contain collision geometry require the prefix "COLLISION " in the node's name.

Description of custom properties

The following custom properties are added to native FBX node types to add VRSG-specific
functionality.

Mesh node
Custom properties:

e Shader Override — An integer value that declares what shader will be applied to the
node's geometry. This property can be applied to textured mesh nodes. For example, the
value '4' is currently used to define when alpha test should be applied in the pixel shader
when rendering the mesh. Valid values are:

0: No shader override is applied to the geometry.
4: Use shader-based alpha testing on the texture applied to this geometry.
8: Use shader-based alpha testing and texture animation on this geometry.

e [RObjectld - An integer value that indicates the IR object Id to be assigned to all of the
node's children.

e Material - An integer value that indicates the IR material classification of this node's
geometry.

e NoDeferRender - A Boolean value that forces the node's geometry into the opaque (non-
distance sorted) pass.

e PassThroughMesh - A Boolean value that marks the geometry for use in mixed-reality
applications. Results in the mesh node being used to identify a location in the scene
where real-world surface pixels will be rendered, replacing the virtual-world pixels.

Null node
Custom properties:

e groundPlaneZ - Defines the ground clamping offset from the model's origin that will be
used when this model is clamped to the terrain. This property should be assigned to the
first node of a model.

Multi-textured mesh nodes

The tool supports Light Map and Ambient Occlusion textured geometry. These textures are
identified via" LM" and " AOQO" appended to the end of their filename. The textures should
be of the same size/resolution and share the same filename (<filename> LM.rgb &
<filename> AO.rgb). These textures share a second set of texture (UV) coordinates applied
to the geometry node.

The Light Map and Ambient Occlusion textures can be referenced to the mesh node by two
methods:

e The Light Map and Ambient Occlusion map share the same filename as the diffuse
texture applied to the mesh node. For example, if the diffuse texture is named "door.rgb"
then the Light Map and Ambient Occlusion texture are named accordingly

8-10 MVRsimulation VRSG User’s Guide

"door LM.rgb" and "door AOQ.rgb." The converter will look for LM and _AO textures
appended to the diffuse texture filename. If these textures are found to exist, the geometry
will use multi-texturing.

o The Ambient Occlusion texture can be referenced via the "Ambient Color" layer attached
to the mesh node. An associated Light Map texture will share the same name as the
Ambient Occlusion texture but with LM (instead of _AQO) appended to the filename.

The tool also supports decal textured geometry. Decal texture support is currently
implemented using FBX Layered Texturing. Both the diffuse and the decal texture associated
with the mesh are expected to be added to the Layered Texture. The two textures are
identified by the blending mode assigned to them. The diffuse texture uses the opaque
blending mode (FbxTexture::eOver). The decal texture uses the additive blend mode
(FbxTexture::eAdditive). A second set of UV coordinates is applied to the geometry node and
used by the decal texture.

& MVRsimulation Model Viewer
File View Setup Switches Articulated Parts About..

frticulated Parts About...

The resulting FV510 model in
MVRsimulation's HPX model format,
displayed in MVRsimulation's Model
Viewer; shown here in textured view,
wireframe view, and view with the
articulated turret.

Chapter 8 Converting FBX and OpenFlight Formats to MVRsimulation Runtime Formats 8-11

Considerations for converting FBX character models

Upon request, MVRsimulation will provide customers under active maintenance a sample
character model in . MAX, .FBX and .HPX formats so that you can examine the details, and
use the example character in .MAX format as a template. Contact
support@mvrsimulation.com to request this set of sample models. You can delete the
geometry supplied in the template, (except for the collision geometry) and then link your
geometry to the existing nodes, which are located under the LOD node. The character
includes a LOD node (which can have any number of child nodes), a collision node (which is
the same for all characters), and the skeleton (contains the bones). For information about the
nodes, see the earlier part of this chapter. After you link your geometry to the existing nodes,
you need to skin the meshes. Your characters can have any number of separate meshes. All
meshes must be skinned so that the character can perform the animations successfully.

When you export your character in 3ds Max to FBX format, only select the Scale Factor —
Automatic checkbox, and select the FBX file format options ASCII type and FBX 2009
version. Unselect the options Animation, Cameras, Lights, and Embed Media (if they are
already selected). These options are shown in the following example of the FBX export
dialog box:

The options to select and
unselect in 3dsMax for
exporting a character
model to FBX format.

The T-pose is the bind pose (initial pose) for all MVRsimulation-format character models. All
models should have similar proportions; they can vary with some small differences, but do
not scale the bones. Scaling the bones will prevent a character from being able to use
MVRsimulation’s standard character animations. Similarly, the origin of your character

8-12 MVRsimulation VRSG User’s Guide

should remain the same origin as in the template (at the hips). If you are not using the MAX
template file from MVRsimulation, be sure to use the file mvr_control _rig.fbx, which defines
the transformations for each bone in MVRsimulation's standard rig and their offsets that all
our animation files use. (The .MAX template file is an example of how to create a model
using this default control rig.)

Considerations for FBX models output from CityEngine
If you intend to export building models from CityEngine in FBX format:

e You must have CityEngine Advanced, which supports exporting urban models in FBX
format. (CityEngine Basic does not export models in FBX format.)

e Make sure that when you import source data into the CityEngine scene file, you specify
the source data’s coordinate system as projected UTM WGS1984, and then choose the
corresponding UTM zone. Again, this elevation data must be in the UTM WGS84
projection. (VRSG natively supports geocentric WGS1984, but will support UTM WGS
1984 when the —utmModel flag accompanies the model’s entry in the vrsg.clt cultural
feature file.)

e Break up large city footprints into sections approximately 5 km x 5 km to ensure optimal
performance in VRSG for rendering large models. (You can use Esri ArcGIS Pro to split
up a building footprint shapefile into smaller models.) You would list all these models as
separate entries in the terrain’s vrsg.clt cultural feature file.

e Ifyou encounter z-fighting in your exported CityEngine model, the cause is likely a
building polygon layer that has overlapping building polygons and a building was
extruded inside another building. The remedy is to clean up the footprint layer or edit the
model.

When you export your urban model from CityEngine, be sure to set the following:

o Choose Advanced Settings > File Type, and then select Text from the drop-down menu
to export the model in ASCII format.

e Choose Geometry Settings > Global Offset, and then select Center to center the origin of
the model before exporting the model.

e Choose General Settings > Terrain Layers, and then select ‘Do not export any terrain
layers.’

e Choose AutoDesk FBX as the output format.

CityEngine does not export levels of detail (LODs) with a model. If you want your resulting
model to have LODs when it is rendered in VRSG, you will need to add them in the
appropriate model editing application (such as Autodesk Maya or 3ds Max) prior to
converting the model to MVRsimulation’s model format.

Chapter 8 Converting FBX and OpenFlight Formats to MVRsimulation Runtime Formats 8-13

The following example illustrates the building footprints of Dubai in CityEngine prior to
export as a large FBX model (left), and the resulting rendering in VRSG after the conversion
and creation of a cultural feature file for the model.

Left: The city of Dubai’s building
footprints in CityEngine prior to
exporting an urban model of 6,000
realistic 3D buildings, in FBX
format for conversion to
MVRsimulation's model format.

Below: The resulting city rendered
in VRSG. The terrain was built with
60 cm imagery in MVRsimulation
Terrain Tools.

Above: The city of Dubai’s building footprints
in CityEngine prior to exporting an urban
model of 6,000 realistic 3D buildings, in FBX
format for conversion to MVRsimulation's
model format with the FBX conversion utility.

Right: The resulting city model rendered in
VRSG, placed on 60 cm resolution terrain built
with MVRsimulation Terrain Tools.

Below is the cultural feature file for placing the converted model of 600 buildings on the
terrain:

! LL coordinates
N25 12 35.962 E055 16 39.895 6.00 -0.00 -0.00 0.00
Dubai Buildings.hpy -utmModel

Inspecting converted models in the Model Viewer

Once you have converted a 3D model from FBX format to MVRsimulation’s model format,
you can use MVRsimulation’s Model Viewer to inspect the converted model to make sure
that the geometry and textures are correctly assembled. See the chapter “Previewing Models,
Effects, and Terrain” for more information about using Model Viewer.

Note: If your model appears dark in Model Viewer and no error message is displayed stating
that textures are missing, check the vertex normals on your model. Incorrect vertex normals
will cause a converted model to appear dark. You can resolve this issue by recalculating the
vertex normals in your 3D modeling software. This issue can occur with models converted
from a CityEngine export. It is a known issue that CityEngine sometimes exports models with
vertex normals pointing downward instead of upward. CityEngine also applies a default
material to exported models. This material can make the models appear darker in VRSG as
well. In such a case, removing this default material from the model is recommended.

8-14 MVRsimulation VRSG User’s Guide

Converting OpenFlight formats

The OpenFlight format is a popular standard for entity models and terrain databases in the
visual simulation industry. Although OpenFlight is a powerful on-disk representation of
virtual worlds, it does not natively allow VRSG to exploit many of its performance enhancing
features such as terrain paging, texture paging, and specialized hybrid culling algorithms.
Therefore, you must convert OpenFlight models and terrain databases into the optimized
MVRsimulation runtime formats before using them with VRSG. Delivered with VRSG are
tools to perform these conversions.

MVRsimulation provides two utilities for converting OpenFlight models and databases to
MVRsimulation runtime formats:

o oflt2Hpx.exe — converts an OpenFlight format dynamic model to the MVRsimulation
HPX model format.

o terrex-oflt2Mds.exe — converts an OpenFlight format terrain database produced with
Terra Vista, Synthetic Environment Core (SE Core), or TerraSim to MVRsimulation’s
VRSG round-earth terrain tiles format (MDS).

You run each utility from within a command-line window, as described in this chapter. These
tools support version 13 of the OpenFlight API, and are 64-bit applications.

In addition to these conversion utilities is an MVRsimulation plugin for Presagis Creator. The
plugin hpxPlugin.dll converts an OpenFlight format dynamic model to MVRsimulation’s
HPX model format. The plugin and conversion utilities are located in the directory:
\MVRsimulation\Common\Uti\OpenFlight.

Converting OpenFlight models to HPX format

If you create your own 3D content, your models must be in OpenFlight format in order to use
MVRsimulation’s utility to convert them to HPX format so that you can use the models in
VRSG. You can not only use Presagis Creator to create OpenFlight models, but Autodesk
Maya and 3DS Max are two other modeling tools that have OpenFlight export capabilities. If
you are using a modeling tool that does not have an OpenFlight export option, you can use
tools such as Okino Polytrans or Right Hemisphere Deep Exploration to convert your models
to OpenFlight format.

To convert an OpenFlight format model to an MVRsimulation HPX-formatted model, you
can use one of the following methods:

e Ifyou are using Presagis Creator, you can use MVRsimulation’s hpxPlugin.dll converter
from within Creator.

e Ifyou have OpenFlight models from some other source, you can use MVRsimulation’s
oflt2Hpx.exe converter from the command line.

Chapter 8 Converting FBX and OpenFlight Formats to MVRsimulation Runtime Formats 8-15

If you have a large number of models to convert at once, you should consider using the
oflt2Hpx.exe command-line converter as a faster way of completing the conversion. By
creating a batch file (.bat), you can list each individual invocation of oflt2hpx and convert
several models at once.

LBH e R ANE 8 88

[CE e 51 P8

Using the hpx plugin from within Creator

The plug-in hpxPlugin.dll converts an OpenFlight-formatted dynamic model to an
MVRsimulation HPX model format from within Creator. Once you install this plugin in the
\Plugins directory of Creator and then restart Creator, the MVRsimulation HPX runtime
format will be available to you as an export format.

To export a model in HPX format from within Creator, choose File > Export from within
Creator, and select MVRsimulation HPX as the export format, as shown below:

&) Export Database File x
Savein: [[| Chamacters v e mekrmEe
+ - Date modified Type size
r | Textures 1710720171015 AM File folder
P @ animal-camel-001hpx S/8/20146:47TAM MetaVR 30 Madel 19,287K8
Desidon
m
Librares
5
This PC
Network
Fie name: [erimal-camel-001 - save |
Save as type: = Cancel |

Note: A current limitation of the Creator plugin is its inability to traverse any external
references in the OpenFlight hierarchy. Therefore, if your dynamic model contains external
references, you must use the standalone command-line converter, oflt2hpx.exe, to have the
external references included in the output.

8-16

MVRsimulation VRSG User’s Guide

Using the oflt2Hpx utility

The oflt2Hpx utility outputs the resulting model as an HPX file. You run the oflt2Hpx utility
in a command-line window, from the directory that contains the OpenFlight model file you
want to convert.

To run oflt2Hpx:
1. Open a command-line window.
2. Change to the directory that contains the OpenFlight file you want to convert.

3. At the command line, type a command using the following form:

oflt2Hpx mymodel.flt model2.hpx

In this example, the model mymodel.flt is converted to a file called model2.hpx, in the current
directory. You can give the HPX file any name you want, with the .hpx extension.

If the OpenFlight model consists of any external references, the converter first attempts to
locate the externally referenced file at the path called out by the external reference record that
references the external file. If that fails, the oflt2Hpx utility attempts to locate the file in the
current directory. If that fails, a warning message is displayed, and the utility ignores the
externally referenced file.

After the conversion is complete, move the model2.hpx file to the
\VRSG\Models\User\<subdirectory> where <subdirectory> is the category of model and
move any texture files that are used by the model to the
\VRSG\Models\User\<subdirectory>\Textures directory. You can find out which texture files
are used by the model by opening the HPX file in a text editor. All referenced textures are
listed at the top of the HPX file.

In addition to converting files individually, you can convert a whole directory of OpenFlight
models to HPX format at once. To do so, run the oflt2Hpx utility without specifying any file
names in the command line. The utility will proceed to convert every FLT model in the
current directory to an HPX file.

By adding an entry for a converted model to the ModelMap.ini file you can use the model as
a dynamic entity in VRSG. See the chapter “Configuring Models and Events” for information
about mapping entity models to DIS enumerations.

To enhance the dynamic display of a moving model in VRSG, you can add metadata to an
OpenFlight model before exporting it to HPX format. See the chapter “MVRsimulation 3D
Model Format” for more information.

If a converted culture model is in UTM projection, it can be converted to UTM WGS1984
projection, by adding the command —utmModel to the model’s entry in the terrain’s vrsg.clt
cultural feature file. (VRSG natively supports geocentric WGS1984, but supports UTM WGS
1984 when the —utmModel flag accompanies the model’s entry in the .clt file.)

Shadow map and light map support

For models created in Presagis Creator, VRSG includes enhanced multi-texture support,
including shadow maps and light maps. For faces with two textures applied, the second
texture will be treated as a light map or a shadow map. In daytime viewing, the alpha channel

Chapter 8 Converting FBX and OpenFlight Formats to MVRsimulation Runtime Formats 8-17

of the second texture will be interpreted as a shadow map. In nighttime viewing, the RGB
channels of the second texture will be interpreted as a light map.

World Reference Model support

The oflt2Hpx utility and the Creator plugin support a subset of the World Reference Model
(WRM) Flight Entity Specification of the Distributed Interactive Simulation (DIS) standard.

WRM support is limited to assigning articulated part codes to Degree Of Freedom (DOF)
nodes, and mapping Switch nodes to DIS appearance masks. To assign an articulated part
code to a DOF, use the syntax: @dis articulated part N in the comment field of the DOF
node. N in this case designates the desired articulated part code. As an example, this comment
would assign 4096 (main turret) to the selected DOF node.

DOF Attributes : turret n

ID: turret Madify All [¥] Reflect Selection

| DOF | Translate | Rotate | Scale | DB Mavigator | Comments | VEBS2 |
Comments
@dis_articulated part_ 4096

The full set of supported DIS enumerations for articulated parts can be found in IEEE 1278.
This document is included in the VRSG installation in
\MVRsimulation\VRSG\Models\SISO-REF-010-2023 Enumerations v31.pdf.

If a DOF node does not have a comment, it is assumed to be a turret (4096) if it rotates about
the z-axis, or a gun (4416) if it rotates about the y-axis.

You can use WRM comments to map switch states to DIS appearance bits. To do so, add a
comment to the switch node of the form:

@dis switch switch-type

Switch-type can be a symbolic name, or a hexadecimal number, that defines which bits of the
appearance mask are relevant for the switch node. The DIS protocol allocates two bits in the
appearance mask, allowing four damage states. As an example, the DIS protocol allocates bits
3 and 4 of the appearance mask for damage state, which corresponds to a mask of 0x18. Add
a comment to the switch node using one of the following forms:

8-18 MVRsimulation VRSG User’s Guide

@dis switch 0x18
@dis switch damage

In general, the hexadecimal notation is recommended over symbolic names to comment
switch nodes. If a switch node has no comment at all, it is assumed to be a damage switch.
The following symbolic names are supported by the conversion tools:

WRM symbolic name Equivalent hexadecimal notation
damage 0x18

mobility 0x2

fire_power 0x4

launcher 0x10000

hatch 0xe00

lights 0x7000

engine 0x400000

life_form_state 0xf0000

The children of the switch node correspond to all the possible states. In the case of a damage
switch, 2 bits imply 4 possible states. Associated with each switch child is a value. VRSG
performs a logical AND between the DIS appearance mask and the switch mask, and the
switch child with the matching value is rendered. You need not supply switch children for all
possible states. If VRSG does not find a matching state, the first child is used. If a switch
node has 4 children, their left-to-right order implies their value. For example, with a damage
switch of mask 0x18, the 4 switch children would have the values 0x00, 0x08, 0x10, 0x18.

You can specify the value of a switch child explicitly by entering:
@dis state N

in the comment field of the switch child. The value of N is typically a small integer ranging
between zero and the number of switch children minus one. In the case of the damage switch
with 4 possible children, the possible states could be 0, 1, 2, or 3.

The WRM standard allows for a switch child to support a range of values with syntax such as:
@dis state 0-3

MVRsimulation’s OpenFlight conversion tools do not support this and require one distinct
switch value per child.

Chapter 8 Converting FBX and OpenFlight Formats to MVRsimulation Runtime Formats 8-19

Data to supply as per-texture comments

e (@mvr:treeShader - tells VRSG to threshold the alpha channel, converting pixels below
50% opaque to fully transparent, and anything over 50% opaque to fully opaque. Useful
for removing alpha-blending induced haloes around trees, and allows for more efficient
rendering of such objects.

e (@mvr:grassShader - similar to @mvr:treeShader, with an animated offset applied to the
horizontal texture coordinates. This comment can be used to create the appearance of
movement of grass textures, or tree foliage.

Data to supply as comments for light point nodes
e (@mvr:DisplayInVisual - the light point is visible to the naked unaided eye.

e (@mvr:DisplayInIR - the light point is visible in thermal infrared wavebands.
e (@mvr:DisplayInNVG - the light point is visible in near-IR (NVG) wavebands.

Data to supply as comments for object nodes

@mvr:lightmap id=N - indicate the geometry below the Object node corresponds to light
map controls addressed to light map N, where N is an integer in the range of 0 to 15.

Data to supply as comments for group nodes

(@mvr:runway - indicates that the geometry below should be rendered as a subface, with
depth writes disabled and depth bias enabled. This comment is used to prevent z-fighting
(flashing or flickering) between the coplanar or nearly coplanar terrain geometry beneath.

Z-fighting is common on runway models because they have many layered faces. The order of
the hierarchy of the model is important for how an airfield is drawn in VRSG. The bottom
layer should go on the very right (usually asphalt). The topmost layer, which is usually some
level of striping placed on top of the model, should be at the very end of the hierarchy.

If you plan to compile a runway model in MVRsimulation's Terrain Tools, put the
(@mvr:runway comment in each geometry group layer on top of the bottom layer (asphalt
group). If you are using MVRsimulation's Curved Runway tool, put this comment in the
bottom layer (asphalt group).

See the MVRsimulation Terrain Tools User’s Guide for more information about compiling a
runway model into the terrain with Terrain Tools.

Inspecting converted models in the Model Viewer

Once you have converted a 3D model from OpenFlight format to MVRsimulation’s model
format, you can use MVRsimulation’s Model Viewer to inspect the converted model to make
sure that the geometry and textures are correctly assembled. See the chapter, “Previewing
Models, Effects, and Terrain” for information about using Model Viewer to inspect your
converted models.

Considerations for using models output from CityEngine

Both CityEngine Basic and Advanced have the option to export building models in Collada
DAE format, which you can import into Presagis Creator for exporting building models in
OpenFlight format.

If you intend to export building models from CityEngine:

8-20

MVRsimulation VRSG User’s Guide

e Make sure that when you import source data into the CityEngine scene file, you specify
the source data’s coordinate system as projected UTM WGS1984, and then choose the
corresponding UTM zone. Again, this elevation data must be in the UTM WGS84
projection. (VRSG natively supports geocentric WGS1984, but will support UTM WGS
1984 when the —utmModel flag accompanies the model’s entry in the vrsg.clt cultural
feature file.)

e Break up large city footprints into sections approximately 5 km x 5 km to ensure optimal
performance in VRSG for rendering large models. (You can use Esri ArcGIS Pro to split
up a building footprint shapefile into smaller models.) You would list all these models as
separate entries in the terrain’s vrsg.clt cultural feature file.

e Ifyou encounter z-fighting in your exported CityEngine model, the cause is likely a
building polygon layer that has overlapping building polygons and a building was
extruded inside another building. The remedy is to clean up the footprint layer or edit the
model.

When you export your urban model from CityEngine, be sure to set the following:

e Choose Advanced Settings > File Type, and then select Text from the drop-down menu
to export the model in ASCII format.

e Choose Geometry Settings > Global Offset, and then select Center to center the origin of
the model before exporting the model.

e Choose General Settings > Terrain Layers, and then select ‘Do not export any terrain
layers.’

e Choose Collada DAE as the output format, if your modeling tool is Presagis Creator (you
can choose a Collada version as well). You would import the DAE model into Presagis
Creator to convert it to FLT format, and use MVRsimulation’s HPX plugin for Creator.

CityEngine does not expor