
Proceedings From The 1997 Fall Simulation
Interoperability Workshop

Rapid Terrain Visualization: Prototyping Synthetic Natural
Environments for CGF and Visualization

Alan Evans, Howard Lu, Tod Shannon
SAIC

Richard Rybacki
MetaVR

Victor Skowronski
TASC

ABSTRACT: The mission of the Rapid Terrain Visualization (RTV) ACTD is to provide Digital Terrain
Data (DTD) to the warfighter for intelligence and analysis, mission planning, and course of action
analysis. RTV datasets will be archived and disseminated by the Battlefield Awareness and Data
Dissemination (BADD) system. The applications using RTV data include ABCS applications such as MCS
and the prototype visualization application BPV (Battlefield Planning Visualization). Low cost
visualization applications are also currently under development for use in RTV. In addition, CGF
simulation applications will be used for force-on-force modeling in support of COA analysis. RTV will
provide complex data using semi-automated feature extraction techniques under tight time constraints. The
RTV Transform Team is tasked with providing software tools to teams in the field that convert the data
archived and disseminated by BADD into usable CTDB datasets for CGF simulation, as well as runtime
datasets for low-cost visualization applications.

1 Background
The mission of the Rapid Terrain Visualization
(RTV) ACTD is to provide Digital Terrain Data
(DTD) to the warfighter for intelligence, situation
awareness, mission planning, and course of action
analysis. These data will be derived from standard
NIMA products as well as from collection assets
tasked to respond to crisis situations in areas of
interest around the world. RTV applications and
datasets will be integrated into the Battlefield
Awareness and Data Dissemination (BADD)
system. The software using RTV data will be
ABCS (Army Battle Command System)
applications such as MCS and the prototype
visualization application BPV (Battlefield
Planning Visualization). CGF simulation
applications will be used for force-on-force
modeling in support of COA analysis. In addition,
low cost visualization applications are also
currently under development. RTV will provide
complex data under very tight time constraints.
The RTV Transform Team is tasked with
providing software tools to the Topo teams in the
field, which convert the data archived and
disseminated by BADD into usable CTDB datasets
for CGF simulation, as well as runtime datasets for
low-cost visualization applications.

2 Statement of the Problem
Building terrain databases for visualization and
simulation applications has historically been a
time-consuming and costly process. Databases
originate in NIMA products such as DTED,
DFAD, ITD and PITD. Typically, an 18-24 staff-
month effort has been required to produce a 90km
x 90km playbox of STOW-like complexity. This
timeline mostly consists of data fusion,
generalization and enhancement performed in a
COTS GIS environment. Currently, global
coverage exists only at very coarse levels of
resolution. Thus, exercises need to be planned far
in advance to allow for the collection and
processing of data at higher levels of resolution.
Recent experiments, such as Topo Force XXI have
made progress in shortening the timelines for
certain types of database production. However,
running simulations on short notice in areas of
interest other than US military training sites is not
yet a reality. The stated timeline requirements for
the RTV ACTD are: 20km x 20km in 18 hours,
90km x 90km in 72 hours, and 300km x 300km in
12 days.

3 Technical Approach
An innovative approach is needed to meet the
ambitious goals of the Transform Team. Put
simply, the approach is to take the existing
compiler for building CTDB databases, and
replace the “front end” with software which
directly imports elevation and feature data in
standard NIMA format. In its place, we provide a
software environment for generalization,
enhancement, and application-specific value-added
processing. A “back end” has been added as well
which exports the database in the MDB format
used by the VRSG (Virtual Reality Scene
Generator) low-cost visualization application
which has been developed by MetaVR. An
underlying assumption is that cross-theme
correlation and data fusion occur before feature
data are ingested. In what follows, we explore the
architectural decisions underlying the Transform
Team technical approach.

3.1 Build on SEDRIS
The first architectural decision made by the
Transform Team was to use SEDRIS (Synthetic
Environment Data Representation Interchange
Specification) for ingest of source data. The
SEDRIS object model has been a guide throughout
and SEDRIS software is used for ingest.
Specifically, the SEDRIS Level 0 API for VPF
format data is used to read feature data in the
initial assembly phase. This Level 0 API has been
designed to work with VPF products such as
DTOP and VITD. The RTV feature extraction
team will supply feature data in VPF format, as
specified by MEDS (Mission Essential Data Set)
For elevation data, a SEDRIS Level 0 API has
been developed by the RTV Transform Team
which provides DTED data at varying levels of
resolution. This DTED SEDRIS interface is a
prototype implementation of the SEDRIS object
model for 2D gridded data sets. The RTV DTED
SEDRIS Level 0 API currently is compatible with
DTED Level I and II NIMA products, as well as
DTED Levels III-V in ERDAS format.

3.2 Push Vs. Pull
In STOW legacy CTDB compiler software, within
each GCS cell, the top-level code construct is a
main loop that iterates over all patches in the cell.
Within the main loop, there is a “pull” of data
from the available S1000 input, making calls to the
S1K API. In sequence, function calls extract
features by type, such as microterrain, roads and
buildings. This is inherently inefficient, since the
organization of data in the S1000 is not optimized

to support the types of queries made by the
compiler. Data structures get processed over and
over again, as filtering takes place to implement
the S1K API calls in response to the “pull”
mechanism. The RTV Transform Team believes
that data should be “pushed” from available
sources into a form that is organized to support the
kinds of queries which will be made by the
compiler software. We have designed and are built
an Interim DataBase (IDB) format to implement
this architectural belief. IDB is implemented as a
C++ class library that allows for efficient retrieval
of geospatial data by the compiler “middle end.”
Inheritance is used to make available the exact
types of attributed data required by the CGF and
visualization applications downstream. The
Transform Team architecture will allow for easy
extensibility to other forms of source data. By
isolating the point in the data stream where code
will be added for a pull from a new data source,
the amount of coding will be kept to a minimum.
The push of source data is especially well-suited to
the use of SEDRIS. The SEDRIS model is flexible
enough to allow features and attributes to be stored
in many different ways. By opening a transmittal,
then traversing and filtering the data based on
classification and attribution, the need for a layer
of software implementing source data queries on
persistent store is removed.

3.3 Persistence of Intermediate Data
A second fundamental architectural principle
underlying the work of the RTV Transform Team
is to maintain data in an intermediate format that is
persistent. IDB is a repository where all source
data are assembled. An important requirement of
the RTV program is to support incremental
compilation of simulation databases. From an
operational perspective, background elevation data
at a coarse level of resolution and perhaps some
feature data may be all that is available in a rapid
deployment or mission rehearsal. Adding higher
resolution data and more feature classes will
inevitably be an iterative process as collection
assets are tasked and feature extraction take place.
The persistent store capability enables compilation
that is incremental both spatially and thematically.
The software that implements IDB processing is
being built to be tolerant of system failure and will
recover and restart processing from periodic
checkpoints. This is required to insure system
reliability when faced with large and complex data
sets. The IDB persistent store enables this fault-
tolerance.

3.4 3D Visualization and Modification of
Geometry and Attributes

Our approach to building the Synthetic Natural
Environment (SNE) starts with a complete
triangulation of the terrain surface. Georeferenced
data are converted to the Global Coordinate
System (GCS) to preserve the geometry of the
source data. All SNE data added to this framework
are available in a 3D interactive modeling
application called the Geospatial Workstation
(GW). The GW opens a direct user viewport on
the IDB. In other words, the user will be able to
view the SNE as it will appear to target
applications. Both a 3D and 2D viewport are
available on the Geospatial Workstation. These
views can be slaved or used independently. The
GW has proven to be a valuable tool in software
debugging and system test. One of the main
functions of the GW will be the control of data
flow into the IDB, with processes and filters
spawned from the GW GUI.

IDB will provide a convenient interface to a
master library of geotypical models. The
geometry, textures, and other attributes of models,
as well model topology, will be modifiable from
the GUI of the Geospatial Workstation.

3.5 Generalization, Enhancement and
Value-Added Processing

The source data of interest to the RTV program
will largely not have available color and texture
data suitable for simulation visualization
applications such as a Stealth. Part of the
Transform Team effort will be directed at
providing geospecific textures that can be applied
to the terrain surface and feature coverages drawn
from available source data. At the present time,
attribution algorithms exist at two levels of
complexity. At a coarse level, TIN polygons
overlapping features such as soil defrags and areal
hydrology are attributed based on the FACC
values in these features. At a more complex level,
the TIN is retriangulated, based on clipping against
these same features before attribution. In addition
to decoration of features with color and texture,
algorithms will be added to IDB processing which
make generalizations of features, using techniques
such as thinning and geometric relaxation, which
are necessary for scene complexity management in
the target visualization application. Processing has
also been added which makes features
polymorphic in ways meaningful to a visualization
application. For example, roads, are described
locally in IDB as a sequence of vertices and edges,

with width attribution of the edges. For
visualization, a more complex representation is
needed, with a 3D polygonal representation of the
roadway, complete with consistent texture
coordinates. IDB maintains both local
representations, as polymorphic views of a
common base class instance. From a global point
of view, road segments fit together to form a
topological network. The Transform Team intends
to include value-added processing for linear
network defragmentation and reassembly, and
encapsulate this processing in the IDB. Formally
speaking, an IDB road network is an aggregation
of road segment instances, with subclassing of the
segments as required by the application semantics.

Previously, value-added processing such as the cut
and fill of roadbeds on hillsides to preserve
correctness of camber and grade, has been
performed in a front-end environment such as a
GIS. The Transform Team is analyzing the
requirements for this kind of value-added
processing in RTV, given the high level of
resolution of available elevation data and the
tactical level of detail of most of the feature data. It
may be necessary to provide semi-automated cut
and fill in areas of coarse resolution elevation data.

3.6 Common Data Path
Another fundamental architectural principle
underlying the work of the RTV Transform Team
is to maintain a common data path, from standard
sources to applications, until the latest point
possible. The IDB provides a common data path to
the SAF CTDB and the VRSG MDB for all
geometric data. This is a best-effort attempt to
maintain correlation between these views of the
SNE.

4 Details of Design
Some details of the data ingest process, and of the
IDB class library itself, are spelled out in this
section.

4.1 Data Flow
Figure 1 illustrates the data flow through from
source data to SAF CTDB and VRSG MDB
products. Input may either be a subset of the full
extents of the end product, or a subset of the
feature content of the desired output. The eventual
inclusion of the SEDRIS Write API may be
required for SNE interchange with C4ISR
application environments.

Figure 1

4.2 Software Layering
Figure 2 shows the layering of software services
provided by the IDB class library. The Geospatial

Workstation is an IDB application that uses
portions of the IDB library as depicted in Figure 3
below.

CLCGF
(ModSAF 3.0 & GCS)

IDB CTDB

VRSG

MDB

DTED
DTED
Level 1-5 DTED

VPF
MEDS, DTOP, ITD

Geospatial Workstation
WWorkstation

Data
Assembly

2D & 3D
Visualization

Value
Added

Processing

MDB
Write API

CTDB
Write API

SEDRIS
Level 0 Write API

SEDRIS
Level 0 Read API

4.3 Interim DataBase (IDB) format and class
library

The Interim Database (IDB) is an intermediate
terrain database format and associated class library
which allows for persistent store, incremental
compilation, and augmentation, either theme-based
or geographic. IDB design is intended to facilitate
the assembly of several different data sources for
terrain and feature information. The format is
application neutral, supporting both computer

generated forces applications as well as visual
system applications. Written in C++, the IDB class
library adheres to C++ coding guidelines,
consistent with industry standards, which have
been developed over a number of SAIC software
projects. Note that all of the class interfaces have
been edited for this paper to concentrate on
important structures and methods.

Figure 2

Figure 3
4.4 Metadata and Top Level Classes
An IDB is highly GCS aware and supports the
creation of databases of arbitrary size and

resolution. For background on GCS (the Global
Coordinate System) see [1] and [2]. At the top
level, the class Idb is an aggregation of metadata,
cells, textures and models. For now, IDB metadata

Value Added
Processing

Feature
Instance
Services

Geometry
Services

Semantic

Object
Mgt

Access

Proxies

Caching

Classification

Checkpointing Indexing,
References

Value Added
Processing

Feature
Instance
Services

Geometry
Services

Semantic

Object
Mgt

Access

Proxies Classification

Caching Checkpointing Indexing,
References

2D/3D GUI User
Interface

describes the extents in geographic coordinates
and lists the GCS cells tiling the database.

struct idbMetaData
{
 float64 swLat;
 float64 swLon;
 float64 neLat;
 float64 neLon;
 int32 numCells;
 int32 *cells;
};

The fundamental class holding the features and
geometry and providing application methods for
insertion, deletion and extraction of data is the
IdbCell:

class IdbCell
{
 public:
 IdbCell(const char *path,

int32 cell,
float32 patchSize);

 IdbCell(const char *path,
int32 cell);

 ~IdbCell();

 int32 insertData(
IdbPrimitiveGeometry
&theData);

 int32 insertData(
IdbTerrainGeometry
&theData);

 int32 insertData(
idbTerrainPolygon
&theData);

 int32 replaceData(
IdbPrimitiveGeometry
&oldData,
IdbPrimitiveGeometry
&newData);

 int32 extractData(
float64 swX,
float64 swY,

 float64 neX,
 float64 neY,

Extraction Method meth,
List
<IdbPrimitiveGeometry>
&data);

 int32 extractData(

int32 numVerts,
 const float64

bounds[][XY],
 ExtractionMethod method,
 List

<IdbPrimitiveGeometry>
&data);

The methods insertData(),
replaceData() and extractData() at
the IdbCell level are the primary interface for
adding, replacing and extracting geometric data.
Each cell has associated metadata:

struct idbCellMetaData
{
 int32 cellNumber;
 float32 patchSize;
 int32 patchesWide;
 int32 patchesHigh;
 int32 numPatches;
 float64 swLat;
 float64 swLon;
 float64 neLat;
 float64 neLon;
 ...
};
 Associated with each cell are instances of
subclasses of the Accessor class. These objects
are responsible for managing the flow of data to
and from persistent store. The possible subclasses
are: VertexAccessor, PolygonAccessor
and SkinAccessor. Each IdbCell is an
aggregation of instances of the class IdbPatch.

4.5 Geometry Structures and Classes
This section lists some of the basic data types used
by IDB. Geometric data are built from Coord3D
structures

struct
 {

float64 x;
float64 y;
float64 z;
int32 cell;

 } gcs;
} Coord3D;

and are instances of subclasses of the class
idbPrimitiveGeometry. This class has
subclasses idbLinearGeometry,
idbSurfaceGeometry,
idbVolumeGeometry and

idbTerrainGeometry. There is also a
geometric class idbPostedGeometry.

Persistent store of data is managed at the
IdbPatch level. The most primitive persistent
geometric structure is the vertexLocal. A
vertexLocal specifies a point in a GCS cell’s
Cartesian coordinate system.

typedef struct
{

uint16 patchNumber;
unit16 x;
uint16 y;
float32 z;

} vertexLocal;

For image generation applications, texture
coordinates and color information are also
provided.

typedef struct
{

vertexLocal vertex;
// Actual spatial data
float32 u;
// Texture coordinate
float32 v; ;
// Texture coordinate
uint8 char r, g, b, a;

 // Color
} vertexLocalVisual;

4.6 Feature Classes
Features are represented as instances of a
particular feature class. All feature classes are
derived from the abstract base class
IdbFeature. This class contains a member
variable of the type idbFeatureType which
indicates which particular subclass a given
instance belongs to. This base class stores a vertex
pool through which geometry of the derived
classes are stored.

typedef enum
{
 IDB_FEATURE_TYPE_LAID_LINEAR,
 IDB_FEATURE_TYPE_LINEAR,
 IDB_FEATURE_TYPE_CANOPY,
 IDB_FEATURE_TYPE_ABSTRACT,

...
} idbFeatureType;

class IdbFeature
{

public:
IDBFeature();
~IDBFeature();
...

private:
idbFeatureType
featureType;
idbLocalVertex
*vertexPool;
int numVerts;
...

};

Linear features such as roads, rivers, and railroads,
which form topological networks conformal to the
terrain surface, are represented locally by the
IdbLaidLinearFeature class, a subclass of
IdbFeature. Coordinates of a linear feature
are stored in GCS cell coordinates. For this
reason, linear features may span terrain patches but
not GCS cells. Linear features are stored as
segments (two or more vertices) of like width and
material type.

enum idbLaidLinearFeatureType
{

IDB_LINEAR_FEATURE_ROAD,
IDB_LINEAR_FEATURE_RAILROAD,
IDB_LINEAR_FEATURE_RIVER,
...

};

class IdbLaidLinearFeature :
public IdbFeature
{
public:

IdbLinearFeature();
~IdbLinearFeature();
IdbLinearFeatureType

getLinearType();
void setLinearType(

 IdbLinearFeatureType);
double getWidth();
void setWidth(double);
short getMaterialType();
void setMaterialType(short

);
...

private:
...

};

5 Implementation
The RTV Transform Team consists of staff of the
Burlington office of SAIC’s Technology Research
Group and MetaVR of Brookline, MA.

Visualization is being provided by the MetaVR
VRSG application with common software
development efforts for data ingest and
integration. The mission of the Transform Team is
to develop more robust processes for production of
SAF and visualization terrain databases, using
only GOTS and open commercial software.
Release 1.0 is scheduled for mid-July, An iterative
spiral of design, build and test will follow, as
resource usage and required enhancements become
better understood. Due to the complex nature of
the work, it is expected that some compromises
will have to be made in early releases.

6 Acknowledgment
The work reported in this paper was performed
under U.S. Government contract DACA76-93-D-
0007. The authors would like to thank our sponsor,
Chris Moscoso, and our technical adviser, Jeffrey
Turner, both of the US Army Topographic
Engineering Center, for their support and guidance
during this program.

7 References
[1] Buettner, C. et al., “Global Coordinate System
in the Improved Computer Generated Forces
Terrain Database”, Proceedings of the 6th
Conference on Computer Generated Forces and
Behavioral Representation, Orlando, Florida, July
1996.

[2] Evans, A. and Stanzione, T., “Coordinate
Representations for CGF Systems”, 13th
Workshop on Standards for the Interoperability of
Distributed Simulations, Orlando, Florida,
September 1995.

Author Biographies

ALAN EVANS is the technical lead of the RTV
Transform Team. He holds a Ph.D. in Mathematics
from Michigan State University and an M.S. in
Computer Science from New York University.
Alan is the manager of the Burlington MA branch
of SAIC.

HOWARD LU is a Senior Software Engineer at
SAIC. Since joining in August 1995, Howard has
been involved in the ICTDB project and the
Synthetic Environment Data Representation
Interchange Specification (SEDRIS) program. He
graduated from the Massachusetts Institute of
Technology with an M.S. in Computer Science in
1995.

TOD SHANNON is a consultant to SAIC. He has
previously worked at Reality by Design, Loral
Advanced Distributed Simulation and BBN
Advanced Simulation Division. Tod has a B.S. in
Computer Science from Carnegie Mellon
University.

RICHARD RYBACKI is a Senior Scientist with
MetaVR Inc. Rich previously worked at TASC,
and is an Air Force veteran. He holds both a B.S.
and an M.S. in Computer Science from the
University of Texas at San Antonio.

VICTOR SKOWRONSKI is a senior member of
the technical staff at TASC. Since joining TASC
in June 1996, Victor has been involved in the
ICTDB project. Prior to joining TASC, he did
research in solid modeling at RPI. Victor has a
Ph.D. in Computer Engineering from RPI, and an
M.E. and B.E. in Electrical Engineering from
Stevens. Institute of Technology. He is also a
licensed Professional Engineer in New York and
Massachusetts.

	1 Background
	2 Statement of the Problem
	3 Technical Approach
	3.1 Build on SEDRIS
	3.2 Push Vs. Pull
	3.3 Persistence of Intermediate Data
	3.4 3D Visualization and Modification of Geometry and Attributes
	3.5 Generalization, Enhancement and Value-Added Processing
	3.6 Common Data Path

	4 Details of Design
	4.1 Data Flow
	4.2 Software Layering
	4.3 Interim DataBase (IDB) format and class library
	4.4 Metadata and Top Level Classes
	4.5 Geometry Structures and Classes
	4.6 Feature Classes

	5 Implementation
	6 Acknowledgment
	7 References

