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ABSTRACT: The mission of the Rapid Terrain Visualization (RTV) ACTD is to provide Digital Terrain 
Data (DTD) to the warfighter for intelligence and analysis, mission planning, and course of action 
analysis. RTV datasets will be archived and disseminated by the Battlefield Awareness and Data 
Dissemination (BADD) system. The applications using RTV data include ABCS applications such as MCS 
and the prototype visualization application BPV (Battlefield Planning Visualization). Low cost 
visualization applications are also currently under development for use in RTV. In addition, CGF 
simulation applications will be used for force-on-force modeling in support of COA analysis. RTV will 
provide complex data using semi-automated feature extraction techniques under tight time constraints. The 
RTV Transform Team is tasked with providing software tools to teams in the field that convert the data 
archived and disseminated by BADD into usable CTDB datasets for CGF simulation, as well as runtime 
datasets for low-cost visualization applications.



1 Background 
The mission of the Rapid Terrain Visualization 
(RTV) ACTD is to provide Digital Terrain Data 
(DTD) to the warfighter for intelligence, situation 
awareness, mission planning, and course of action 
analysis. These data will be derived from standard 
NIMA products as well as from collection assets 
tasked to respond to crisis situations in areas of 
interest around the world. RTV applications and 
datasets will be integrated into the Battlefield 
Awareness and Data Dissemination (BADD) 
system. The software using RTV data will be 
ABCS (Army Battle Command System) 
applications such as MCS and the prototype 
visualization application BPV (Battlefield 
Planning Visualization). CGF simulation 
applications will be used for force-on-force 
modeling in support of COA analysis. In addition, 
low cost visualization applications are also 
currently under development. RTV will provide 
complex data under very tight time constraints. 
The RTV Transform Team is tasked with 
providing software tools to the Topo teams in the 
field, which convert the data archived and 
disseminated by BADD into usable CTDB datasets 
for CGF simulation, as well as runtime datasets for 
low-cost visualization applications. 

2 Statement of the Problem 
Building terrain databases for visualization and 
simulation applications has historically been a 
time-consuming and costly process. Databases 
originate in NIMA products such as DTED, 
DFAD, ITD and PITD. Typically, an 18-24 staff-
month effort has been required to produce a 90km 
x 90km playbox of STOW-like complexity. This 
timeline mostly consists of data fusion, 
generalization and enhancement performed in a 
COTS GIS environment. Currently, global 
coverage exists only at very coarse levels of 
resolution. Thus, exercises need to be planned far 
in advance to allow for the collection and 
processing of data at higher levels of resolution. 
Recent experiments, such as Topo Force XXI have 
made progress in shortening the timelines for 
certain types of database production. However, 
running simulations on short notice in areas of 
interest other than US military training sites is not 
yet a reality. The stated timeline requirements for 
the RTV ACTD are: 20km x 20km in 18 hours, 
90km x 90km in 72 hours, and 300km x 300km in 
12 days. 

3 Technical Approach 
An innovative approach is needed to meet the 
ambitious goals of the Transform Team. Put 
simply, the approach is to take the existing 
compiler for building CTDB databases, and 
replace the “front end” with software which 
directly imports elevation and feature data in 
standard NIMA format. In its place, we provide a 
software environment for generalization, 
enhancement, and application-specific value-added 
processing. A “back end” has been added as well 
which exports the database in the MDB format 
used by the VRSG (Virtual Reality Scene 
Generator) low-cost visualization application 
which has been developed by MetaVR. An 
underlying assumption is that cross-theme 
correlation and data fusion occur before feature 
data are ingested. In what follows, we explore the 
architectural decisions underlying the Transform 
Team technical approach. 

3.1 Build on SEDRIS 
The first architectural decision made by the 
Transform Team was to use SEDRIS (Synthetic 
Environment Data Representation Interchange 
Specification) for ingest of source data. The 
SEDRIS object model has been a guide throughout 
and SEDRIS software is used for ingest. 
Specifically, the SEDRIS Level 0 API for VPF 
format data is used to read feature data in the 
initial assembly phase. This Level 0 API has been 
designed to work with VPF products such as 
DTOP and VITD. The RTV feature extraction 
team will supply feature data in VPF format, as 
specified by MEDS (Mission Essential Data Set) 
For elevation data, a SEDRIS Level 0 API has 
been developed by the RTV Transform Team 
which provides DTED data at varying levels of 
resolution. This DTED SEDRIS interface is a 
prototype implementation of the SEDRIS object 
model for 2D gridded data sets. The RTV DTED 
SEDRIS Level 0 API currently is compatible with 
DTED Level I and II NIMA products, as well as 
DTED Levels III-V in ERDAS format. 

3.2 Push Vs. Pull 
In STOW legacy CTDB compiler software, within 
each GCS cell, the top-level code construct is a 
main loop that iterates over all patches in the cell. 
Within the main loop, there is a “pull” of data 
from the available S1000 input, making calls to the 
S1K API. In sequence, function calls extract 
features by type, such as microterrain, roads and 
buildings. This is inherently inefficient, since the 
organization of data in the S1000 is not optimized 



to support the types of queries made by the 
compiler. Data structures get processed over and 
over again, as filtering takes place to implement 
the S1K API calls in response to the “pull” 
mechanism. The RTV Transform Team believes 
that data should be “pushed” from available 
sources into a form that is organized to support the 
kinds of queries which will be made by the 
compiler software. We have designed and are built 
an Interim DataBase (IDB) format to implement 
this architectural belief. IDB is implemented as a 
C++ class library that allows for efficient retrieval 
of geospatial data by the compiler “middle end.” 
Inheritance is used to make available the exact 
types of attributed data required by the CGF and 
visualization applications downstream. The 
Transform Team architecture will allow for easy 
extensibility to other forms of source data. By 
isolating the point in the data stream where code 
will be added for a pull from a new data source, 
the amount of coding will be kept to a minimum. 
The push of source data is especially well-suited to 
the use of SEDRIS. The SEDRIS model is flexible 
enough to allow features and attributes to be stored 
in many different ways. By opening a transmittal, 
then traversing and filtering the data based on 
classification and attribution, the need for a layer 
of software implementing source data queries on 
persistent store is removed. 

3.3 Persistence of Intermediate Data 
A second fundamental architectural principle 
underlying the work of the RTV Transform Team 
is to maintain data in an intermediate format that is 
persistent. IDB is a repository where all source 
data are assembled. An important requirement of 
the RTV program is to support incremental 
compilation of simulation databases. From an 
operational perspective, background elevation data 
at a coarse level of resolution and perhaps some 
feature data may be all that is available in a rapid 
deployment or mission rehearsal. Adding higher 
resolution data and more feature classes will 
inevitably be an iterative process as collection 
assets are tasked and feature extraction take place. 
The persistent store capability enables compilation 
that is incremental both spatially and thematically. 
The software that implements IDB processing is 
being built to be tolerant of system failure and will 
recover and restart processing from periodic 
checkpoints. This is required to insure system 
reliability when faced with large and complex data 
sets. The IDB persistent store enables this fault-
tolerance. 

3.4 3D Visualization and Modification of 
Geometry and Attributes 

Our approach to building the Synthetic Natural 
Environment (SNE) starts with a complete 
triangulation of the terrain surface. Georeferenced 
data are converted to the Global Coordinate 
System (GCS) to preserve the geometry of the 
source data. All SNE data added to this framework 
are available in a 3D interactive modeling 
application called the Geospatial Workstation 
(GW). The GW opens a direct user viewport on 
the IDB. In other words, the user will be able to 
view the SNE as it will appear to target 
applications. Both a 3D and 2D viewport are 
available on the Geospatial Workstation. These 
views can be slaved or used independently. The 
GW has proven to be a valuable tool in software 
debugging and system test. One of the main 
functions of the GW will be the control of data 
flow into the IDB, with processes and filters 
spawned from the GW GUI. 

IDB will provide a convenient interface to a 
master library of geotypical models. The 
geometry, textures, and other attributes of models, 
as well model topology, will be modifiable from 
the GUI of the Geospatial Workstation. 

3.5 Generalization, Enhancement and 
Value-Added Processing 

The source data of interest to the RTV program 
will largely not have available color and texture 
data suitable for simulation visualization 
applications such as a Stealth. Part of the 
Transform Team effort will be directed at 
providing geospecific textures that can be applied 
to the terrain surface and feature coverages drawn 
from available source data. At the present time, 
attribution algorithms exist at two levels of 
complexity. At a coarse level, TIN polygons 
overlapping features such as soil defrags and areal 
hydrology are attributed based on the FACC 
values in these features. At a more complex level, 
the TIN is retriangulated, based on clipping against 
these same features before attribution. In addition 
to decoration of features with color and texture, 
algorithms will be added to IDB processing which 
make generalizations of features, using techniques 
such as thinning and geometric relaxation, which 
are necessary for scene complexity management in 
the target visualization application. Processing has 
also been added which makes features 
polymorphic in ways meaningful to a visualization 
application. For example, roads, are described 
locally in IDB as a sequence of vertices and edges, 



with width attribution of the edges. For 
visualization, a more complex representation is 
needed, with a 3D polygonal representation of the 
roadway, complete with consistent texture 
coordinates. IDB maintains both local 
representations, as polymorphic views of a 
common base class instance. From a global point 
of view, road segments fit together to form a 
topological network. The Transform Team intends 
to include value-added processing for linear 
network defragmentation and reassembly, and 
encapsulate this processing in the IDB. Formally 
speaking, an IDB road network is an aggregation 
of road segment instances, with subclassing of the 
segments as required by the application semantics. 

Previously, value-added processing such as the cut 
and fill of roadbeds on hillsides to preserve 
correctness of camber and grade, has been 
performed in a front-end environment such as a 
GIS. The Transform Team is analyzing the 
requirements for this kind of value-added 
processing in RTV, given the high level of 
resolution of available elevation data and the 
tactical level of detail of most of the feature data. It 
may be necessary to provide semi-automated cut 
and fill in areas of coarse resolution elevation data. 

3.6 Common Data Path 
Another fundamental architectural principle 
underlying the work of the RTV Transform Team 
is to maintain a common data path, from standard 
sources to applications, until the latest point 
possible. The IDB provides a common data path to 
the SAF CTDB and the VRSG MDB for all 
geometric data. This is a best-effort attempt to 
maintain correlation between these views of the 
SNE. 

4 Details of Design 
Some details of the data ingest process, and of the 
IDB class library itself, are spelled out in this 
section. 

4.1 Data Flow 
Figure 1 illustrates the data flow through from 
source data to SAF CTDB and VRSG MDB 
products. Input may either be a subset of the full 
extents of the end product, or a subset of the 
feature content of the desired output. The eventual 
inclusion of the SEDRIS Write API may be 
required for SNE interchange with C4ISR 
application environments.   

Figure 1 

4.2 Software Layering 
Figure 2 shows the layering of software services 
provided by the IDB class library. The Geospatial 

Workstation is an IDB application that uses 
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4.3 Interim DataBase (IDB) format and class 
library 

The Interim Database (IDB) is an intermediate 
terrain database format and associated class library 
which allows for persistent store, incremental 
compilation, and augmentation, either theme-based 
or geographic. IDB design is intended to facilitate 
the assembly of several different data sources for 
terrain and feature information. The format is 
application neutral, supporting both computer 

generated forces applications as well as visual 
system applications. Written in C++, the IDB class 
library adheres to C++ coding guidelines, 
consistent with industry standards, which have 
been developed over a number of SAIC software 
projects. Note that all of the class interfaces have 
been edited for this paper to concentrate on 
important structures and methods. 

Figure 2

Figure 3 
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describes the extents in geographic coordinates 
and lists the GCS cells tiling the database. 

struct idbMetaData 
{ 
    float64 swLat; 
    float64 swLon; 
    float64 neLat; 
    float64 neLon; 
    int32   numCells; 
    int32  *cells; 
}; 

The fundamental class holding the features and 
geometry and providing application methods for 
insertion, deletion and extraction of data is the 
IdbCell:

class IdbCell 
{ 
  public: 
    IdbCell( const char *path, 

int32 cell, 
float32 patchSize ); 

    IdbCell( const char *path, 
int32 cell ); 

    ~IdbCell(); 

    int32 insertData( 
IdbPrimitiveGeometry 
&theData); 

    int32 insertData( 
IdbTerrainGeometry 
&theData); 

    int32 insertData( 
idbTerrainPolygon 
&theData); 

    int32 replaceData( 
IdbPrimitiveGeometry 
&oldData, 
IdbPrimitiveGeometry 
&newData); 

    int32 extractData( 
float64 swX, 
float64 swY, 

    float64 neX, 
    float64 neY, 

Extraction Method meth, 
List  
<IdbPrimitiveGeometry> 
&data); 

    int32 extractData( 

int32 numVerts, 
    const float64 

bounds[][XY], 
    ExtractionMethod method, 
    List 

<IdbPrimitiveGeometry> 
&data); 

The methods insertData(), 
replaceData() and extractData() at
the IdbCell level are the primary interface for
adding, replacing and extracting geometric data. 
Each cell has associated metadata: 

struct idbCellMetaData 
{ 
    int32   cellNumber; 
    float32 patchSize; 
    int32   patchesWide; 
    int32   patchesHigh; 
    int32   numPatches; 
    float64 swLat; 
    float64 swLon; 
    float64 neLat; 
    float64 neLon; 
    ... 
}; 
 Associated with each cell are instances of 
subclasses of the Accessor class. These objects
are responsible for managing the flow of data to 
and from persistent store. The possible subclasses 
are: VertexAccessor, PolygonAccessor 
and SkinAccessor. Each IdbCell is an
aggregation of instances of the class IdbPatch. 

4.5 Geometry Structures and Classes 
This section lists some of the basic data types used 
by IDB. Geometric data are built from Coord3D 
structures 

struct 
    { 

float64 x; 
float64 y; 
float64 z; 
int32   cell; 

    } gcs; 
} Coord3D; 

and are instances of subclasses of the class 
idbPrimitiveGeometry. This class has
subclasses idbLinearGeometry, 
idbSurfaceGeometry, 
idbVolumeGeometry and



idbTerrainGeometry. There is also a
geometric class idbPostedGeometry.  

Persistent store of data is managed at the 
IdbPatch level. The most primitive persistent
geometric structure is the vertexLocal. A 
vertexLocal specifies a point in a GCS cell’s 
Cartesian  coordinate system. 

typedef struct 
{ 

uint16 patchNumber; 
unit16 x; 
uint16 y; 
float32 z; 

} vertexLocal; 

For image generation applications, texture 
coordinates and color information are also 
provided. 

typedef struct 
{ 

vertexLocal vertex; 
// Actual spatial data 
float32 u;     
// Texture coordinate 
float32 v; ;     
// Texture coordinate 
uint8 char r, g, b, a;  

      // Color 
} vertexLocalVisual;

4.6 Feature Classes 
Features are represented as instances of a 
particular feature class.  All feature classes are 
derived from the abstract base class 
IdbFeature.  This class contains a member
variable of the type idbFeatureType which
indicates which particular subclass a given 
instance belongs to.  This base class stores a vertex 
pool through which geometry of the derived 
classes are stored. 

typedef enum 
{ 
    IDB_FEATURE_TYPE_LAID_LINEAR, 
    IDB_FEATURE_TYPE_LINEAR, 
    IDB_FEATURE_TYPE_CANOPY, 
    IDB_FEATURE_TYPE_ABSTRACT,  

... 
} idbFeatureType; 

class IdbFeature 
{ 

public: 
IDBFeature(); 
~IDBFeature(); 
...  

private: 
idbFeatureType
featureType; 
idbLocalVertex 
*vertexPool;
int numVerts; 
... 

}; 

Linear features such as roads, rivers, and railroads, 
which form topological networks conformal to the 
terrain surface, are represented locally by the 
IdbLaidLinearFeature class, a subclass of 
IdbFeature. Coordinates of a linear feature
are stored in GCS cell coordinates.  For this 
reason, linear features may span terrain patches but 
not GCS cells.  Linear features are stored as 
segments (two or more vertices) of like width and 
material type.  

enum idbLaidLinearFeatureType 
{ 

IDB_LINEAR_FEATURE_ROAD, 
IDB_LINEAR_FEATURE_RAILROAD, 
IDB_LINEAR_FEATURE_RIVER, 
... 

}; 

class IdbLaidLinearFeature : 
public IdbFeature 
{ 
public: 

IdbLinearFeature(); 
~IdbLinearFeature(); 
IdbLinearFeatureType 

getLinearType(); 
void setLinearType( 

      IdbLinearFeatureType ); 
double getWidth(); 
void setWidth( double ); 
short getMaterialType(); 
void setMaterialType( short 

); 
... 

private: 
... 

}; 

5 Implementation 
The RTV Transform Team consists of staff of the 
Burlington office of SAIC’s Technology Research 
Group and MetaVR of Brookline, MA. 



Visualization is being provided by the MetaVR 
VRSG application with common software 
development efforts for data ingest and 
integration. The mission of the Transform Team is 
to develop more robust processes for production of 
SAF and visualization terrain databases, using 
only GOTS and open commercial software. 
Release 1.0 is scheduled for mid-July, An iterative 
spiral of design, build and test will follow, as 
resource usage and required enhancements become 
better understood. Due to the complex nature of 
the work, it is expected that some compromises 
will have to be made in early releases. 
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